×

Two-grid economical algorithms for parabolic integro-differential equations with nonlinear memory. (English) Zbl 1426.65185

The authors propose several two-grid finite element algorithms for solving parabolic integro-differential equations with nonlinear memory. It is obtained that these algorithms are as stable as the standard fully discrete finite element algorithm, and can achieve the same accuracy as the standard algorithm if the coarse grid size \(H\) and the fine grid size \(h\) satisfy \(H =O(h^{(r-1)/r})\).

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65D30 Numerical integration
65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
35R09 Integro-partial differential equations
45K05 Integro-partial differential equations

References:

[1] Abboud, H.; Sayah, T., A full discretization of the time-dependent Navier-Stokes equations by a two-grid scheme, Math. Model. Numer. Anal., 42, 141-174 (2008) · Zbl 1137.76032
[2] Abboud, H.; Girault, V.; Sayah, T., A second order accuracy for a fully discretized time-dependent Navier-Stokes equations by a two-grid scheme, Numer. Math., 114, 189-231 (2009) · Zbl 1407.76111
[3] Axelsson, O.; Layton, W., A two-level method for the discretization of nonlinear boundary value problems, SIAM J. Numer. Anal., 33, 2359-2374 (1996) · Zbl 0866.65077
[4] Bi, C.; Ginting, V., Two-grid finite volume element method for linear and nonlinear elliptic problems, Numer. Math., 108, 177-198 (2007) · Zbl 1134.65077
[5] Bi, C.; Ginting, V., Two-grid discontinuous Galerkin method for quasi-linear elliptic problems, J. Sci. Comput., 49, 3, 311-331 (2011) · Zbl 1251.65157
[6] Biswas, I. H.; Jakobsen, E. R.; Karlsen, K. H., Difference-quadrature schemes for nonlinear degenerate parabolic integro-PDE, SIAM J. Numer. Anal., 48, 1110-1135 (2010) · Zbl 1218.65147
[7] Cai, M.; Mu, M.; Xu, J., Numerical solution to a mixed Navier-Stokes/Darcy model by the two-grid approach, SIAM J. Numer. Anal., 47, 3325-3338 (2009) · Zbl 1213.76131
[8] Cannon, J. R.; Lin, Y., Non-classical \(H^1\) projection and Galerkin methods for nonlinear parabolic integro-differential equation, Calcolo, 25, 187-201 (1988) · Zbl 0685.65124
[9] Cannon, J. R.; Lin, Y., A priori \(L^2\) error estimates for finite element methods for nonlinear diffusion equations with memory, SIAM J. Numer. Anal., 27, 595-607 (1990) · Zbl 0709.65122
[10] Chen, Y.; Li, L., \(L^p\) error estimates of two-grid schemes of expanded mixed finite element methods, Appl. Math. Comput., 209, 197-205 (2009) · Zbl 1163.65064
[12] Chen, C.; Liu, W., A two-grid method for finite volume element approximations of second-order nonlinear hyperbolic equations, J. Comput. Appl. Math., 233, 2975-2984 (2010) · Zbl 1190.65150
[13] Chen, C.; Shih, T., Finite Element Methods for Integro-Differential Equations (1998), World Scientific Pub. Co.: World Scientific Pub. Co. Singapore · Zbl 0909.65142
[14] Chen, Y.; Huang, Y.; Yu, D., A two-grid method for expanded mixed finite-element solution of semilinear reaction-diffusion equations, Int. J. Numer. Methods Eng., 57, 193-209 (2003) · Zbl 1062.65104
[15] Dai, X.; Cheng, X., A two-grid method based on Newton iteration for the Navier-Stokes equations, J. Comput. Appl. Math., 220, 566-573 (2008) · Zbl 1142.76030
[16] Dawson, C. N.; Wheeler, M. F., Two-grid method for mixed finite difference approximations of non-linear parabolic equations, Contemp. Math., 180, 191-203 (1994) · Zbl 0817.65080
[17] Dawson, C. N.; Wheeler, M. F.; Woodward, C. S., A two-grid finite difference scheme for nonlinear parabolic equations, SIAM J. Numer. Anal., 35, 435-452 (1998) · Zbl 0927.65107
[18] Emmrich, E., Stability and error of the variable two-step BDF for semilinear parabolic problems, J. Appl. Math. Comput., 19, 33-55 (2005) · Zbl 1082.65086
[19] Ewing, R. E.; Lin, Y.; Sun, T.; Wang, J.; Zhang, S., Sharp \(L^2\)-error estimates and superconvergence of mixed finite element methods for non-Fickian flows in porous media, SIAM J. Numer. Anal., 40, 1538-1560 (2002) · Zbl 1044.76032
[20] Girault, V.; Lions, J. L., Two-grid finite-element schemes for the steady Navier-Stokes problem in polyhedra, Port. Math., 58, 25-57 (2001) · Zbl 0997.76043
[21] Girault, V.; Lions, J. L., Two-grid finite-element schemes for the transient Navier-Stokes equations, Math. Model. Numer. Anal., 35, 945-980 (2001) · Zbl 1032.76032
[22] Gurtin, M.; Pipkin, A., A general theory of heat conduction with finite wave speeds, Arch. Ration. Mech. Anal., 31, 113-126 (1968) · Zbl 0164.12901
[23] He, Y.; Li, K., Two-level stabilized finite element methods for the Steady Navier-Stokes problem, Computing, 74, 337-351 (2005) · Zbl 1099.65111
[24] Hu, X.; Cheng, X., Acceleration of a two-grid method for eigenvalue problems, Math. Comput., 80, 1287-1301 (2011) · Zbl 1232.65141
[25] Huang, Y. Q., Time discretization scheme for an integro-differential equation of parabolic type, J. Comput. Math., 3, 259-264 (1994) · Zbl 0815.65144
[26] Jin, J.; Shu, S.; Xu, J., A two-grid discretization method for decoupling systems of partial differential equations, Math. Comput., 75, 1617-1626 (2006) · Zbl 1119.65117
[27] Layton, W.; Tobiska, L., A two-level method with backtracking for the Navier-Stokes equations, SIAM J. Numer. Anal., 35, 2035-2054 (1998) · Zbl 0913.76050
[28] Li, S.; Huang, Z., Two-grid algorithms for some linear and nonlinear elliptic systems, Computing, 89, 69-86 (2010) · Zbl 1198.65243
[29] Lin, Y., Galerkin methods for nonlinear parabolic integrodifferential equations with nonlinear boundary conditions, SIAM J. Numer. Anal., 27, 608-621 (1990) · Zbl 0703.65095
[30] Lin, Y.; Thomée, V.; Wahlbin, L., Ritz-Volterra projections onto finite element spaces and applications to integro-differential and related equations, SIAM J. Numer. Anal., 28, 1047-1070 (1991) · Zbl 0728.65117
[31] Lopez-Marcos, J. C., A difference scheme for a nonlinear partial integrodifferential equation, SIAM J. Numer. Anal., 27, 20-31 (1990) · Zbl 0693.65097
[32] Marion, M.; Xu, J., Error estimates on a new nonlinear Galerkin method based on two-grid finite elements, SIAM J. Numer. Anal., 32, 1170-1184 (1995) · Zbl 0853.65092
[33] Miller, R. K., An integro-differential equation for rigid heat conductions with memory, J. Math. Anal. Appl., 66, 313-332 (1978) · Zbl 0391.45012
[34] Mu, M.; Xu, J., A two-grid method of a mixed Stokes-Darcy model for coupling fluid flow with porous media flow, SIAM J. Numer. Anal., 45, 1801-1813 (2007) · Zbl 1146.76031
[35] Mustapha, K.; Brunner, H.; Mustapha, H.; Schotzau, D., An hp-version discontinuous Galerkin method for integro-differential equations of parabolic type, SIAM J. Numer. Anal., 49, 1369-1396 (2011) · Zbl 1230.65143
[36] Pani, A. K.; Peterson, T. E., Finite element methods with numerical quadrature for parabolic integrodifferential equations, SIAM J. Numer. Anal., 33, 1084-1105 (1996) · Zbl 0858.65141
[37] Pani, A. K.; Fairweather, G.; Fernandes, R. I., Alternating direction implicit orthogonal spline collocation methods for an evolution equation with a positive-type memory term, SIAM J. Numer. Anal., 46, 344-364 (2008) · Zbl 1160.65068
[38] Qin, X.; Ma, Y., Two-grid scheme for characteristics finite-element solution of nonlinear convection diffusion problems, Appl. Math. Comput., 165, 419-431 (2005) · Zbl 1075.65123
[39] Raynal, M., On some nonlinear problems of diffusion, (London, S.; Staffans, O., Volterra Equations. Volterra Equations, Lecture Notes in Math., vol. 737 (1979), Springer-Verlag: Springer-Verlag Berlin, New York), 251-266 · Zbl 0425.45011
[40] Shang, Y.; Wang, K., Local and parallel finite element algorithms based on two-grid discretization for the transient Stokes equations, Numer. Algorithms, 54, 195-218 (2010) · Zbl 1352.76068
[41] Sinha, R. K.; Ewing, R. E.; Lazarov, R. D., Some new error estimates of a semidiscrete finite volume element method for a parabolic integro-differential equation with nonsmooth initial data, SIAM J. Numer. Anal., 43, 2320-2343 (2006) · Zbl 1106.65121
[42] Sinha, R. K.; Ewing, R. E.; Lazarov, R. D., Mixed finite element approximations of parabolic integro-differential equations with nonsmooth initial data, SIAM J. Numer. Anal., 47, 3269-3292 (2009) · Zbl 1205.65341
[43] Sloan, I. H.; Thomee, V., Time discretization of an integrodifferential equation of parabolic type, SIAM J. Numer. Math., 23, 1052-1061 (1986) · Zbl 0608.65096
[44] Tachim Medjo, T.; Temam, R., A two-grid finite difference method for the primitive equations of the ocean, Nonlinear Anal., 69, 1034-1056 (2008) · Zbl 1142.76368
[45] Wang, W. S., Long-time behaviour of two-grid finite element method for the fully discrete semilinear evolution equations with positive memory, J. Comput. Appl. Math., 250, 161-174 (2013) · Zbl 1285.65064
[46] Wu, L.; Allen, M. B., A two-grid method for mixed finite element solution of reaction-diffusion equations, Numer. Methods Partial Differ. Equ., 15, 317-332 (1999) · Zbl 0929.65079
[47] Xu, J., A new class of iterative methods for nonselfadjoint or indefinite elliptic problems, SIAM J. Numer. Anal., 29, 303-319 (1992) · Zbl 0756.65050
[48] Xu, J., Some Two-Grid Finite Element Methods (1992), P.S.U., Tech. Report
[49] Xu, J., A novel two-grid method for semi-linear equations, SIAM J. Sci. Comput., 15, 231-237 (1994) · Zbl 0795.65077
[50] Xu, J., Two-grid finite element discretization techniques for linear and nonlinear PDE, SIAM J. Numer. Anal., 33, 1759-1777 (1996) · Zbl 0860.65119
[51] Xu, J.; Zhou, A., Local and parallel finite element algorithms based on two-grid discretization for nonlinear problems, Adv. Comput. Math., 14, 293-327 (2001) · Zbl 0990.65128
[52] Xu, J.; Zhou, A., A two-grid discretization scheme for eigenvalue problems, Math. Comput., 70, 17-25 (2001) · Zbl 0959.65119
[53] Xu, J.; Zhou, A., Local and parallel finite element algorithms for eigenvalue problems, Acta Math. Appl. Sin. Engl. Ser., 18, 185-200 (2002) · Zbl 1015.65060
[54] Zhang, T., Finite Element Methods for Partial Differential-Integral Equations (2009), Science Press: Science Press Beijing, (in Chinese)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.