×

Synchronization of fractional-order neural networks via intermittent quantized control: optimal algorithm. (English) Zbl 07893149

Summary: The biggest challenge of this article is how to maximize the rest time of intermittent controllers. This paper mainly uses intermittent quantized controller (IQC) to examine asymptotic synchronization between fractional-order neural networks (FONNs). Firstly, by utilizing the advantages of intermittent properties, a novel lemma with asymptotic stability inequalities is proposed. Secondly, combining intermittent properties with quantization technique, two different categories of aperiodically intermittent quantized controllers (AIQCs) are designed to ensure asymptotic convergence of FONNs. Due to the certain correlation between control interval, rest interval, and convergence rate parameters, thus, optimization algorithm becomes particularly important in maximizing rest time as much as possible. Thirdly, by constructing Lyapunov functions, several useful conditions are established for the asymptotic synchronization of FONNs. Finally, the rationality of the proposed theoretical analysis is confirmed by two numerical examples.

MSC:

93D99 Stability of control systems
93B70 Networked control
26A33 Fractional derivatives and integrals
Full Text: DOI

References:

[1] Shanmugam, L.; Mani, P.; Rajan, R.; Joo, YH, Adaptive synchronization of reaction-diffusion neural networks and its application to secure communication, IEEE Trans Cybern., 50, 3, 911-922, 2018 · doi:10.1109/TCYB.2018.2877410
[2] He, WL; Luo, TH; Tang, Y.; Du, WL; Tian, YC; Qian, F., Secure communication based on quantized synchronization of chaotic neural networks under an event-triggered strategy, IEEE Trans Neural Netw Learn Syst., 31, 9, 3334-3345, 2019 · doi:10.1109/TNNLS.2019.2943548
[3] Zhang, FF; Zhang, X.; Cao, MY; Ma, FY; Li, ZF, Characteristic analysis of 2D lag-complex logistic map and its application in image encryption, IEEE Multimedia, 28, 4, 96-106, 2021 · doi:10.1109/MMUL.2021.3080579
[4] Tivive, FHC; Bouzerdoum, A.; Amin, MG, A subspace projection approach for wall clutter mitigation in through-the-wall radar imaging, IEEE Trans. Geosci. Remote Sens., 53, 4, 2108-2122, 2014 · doi:10.1109/TGRS.2014.2355211
[5] Xie, Q.; Chen, G.; Bollt, EM, Hybrid chaos synchronization and its application in information processing, Math Computer Model, 35, 1-2, 145-163, 2002 · Zbl 1022.37049 · doi:10.1016/S0895-7177(01)00157-1
[6] Abeles, M.; Prut, Y.; Bergman, H.; Vaadia, E., Synchronization in neuronal transmission and its importance for information processing, Prog. Brain Res., 102, 395-404, 1994 · doi:10.1016/S0079-6123(08)60555-5
[7] Bao, HB; Park, JH; Cao, JD, Synchronization of fractional-order complex-valued neural networks with time delay, Neural Netw., 81, 16-28, 2016 · Zbl 1417.34190 · doi:10.1016/j.neunet.2016.05.003
[8] Wang, L.; Li, H.; Zhang, L.; Hu, C.; Jiang, HJ, Quasi-synchronization of fractional-order complex-value neural networks with discontinuous activations, Neurocomputing, 560, 2023 · doi:10.1016/j.neucom.2023.126856
[9] Meng, X.; Li, Z.; Cao, JD, Almost periodic quasi-projective synchronization of delayed fractional-order quaternion-valued neural networks, Neural Netw., 169, 92-107, 2024 · doi:10.1016/j.neunet.2023.10.017
[10] Hu, C.; Yu, J.; Jiang, HJ; Teng, Z., Exponential synchronization of complex networks with finite distributed delays coupling, IEEE Trans. Neural Netw., 22, 12, 1999-2010, 2011 · doi:10.1109/TNN.2011.2167759
[11] Cai, SM; Zhou, P.; Liu, Z., Pinning synchronization of hybrid-coupled directed delayed dynamical network via intermittent control, Chaos, 24, 3, 2014 · Zbl 1374.34209 · doi:10.1063/1.4886186
[12] Liu, XW; Liu, Y.; Zhou, LJ, Quasi-synchronization of nonlinear coupled chaotic systems via aperiodically intermittent pinning control, Neurocomputing, 173, 759-767, 2016 · doi:10.1016/j.neucom.2015.08.027
[13] Zhou, PP; Shi, JY; Cai, SM, Pinning synchronization of directed networks with delayed complex-valued dynamical nodes and mixed-coupling via intermittent control, J Frankl Inst, 357, 17, 12840-12869, 2020 · Zbl 1454.93243 · doi:10.1016/j.jfranklin.2020.09.043
[14] Wang, Z.P., Zhao, F.L., Qiao, J.F., Wu, H.N., Huang, T.W.: Dynamic intermittent boundary control for reaction-diffusion systems under intermittent noncollocated boundary measurement. IEEE T Syst Man Cy-S,2168-2216 (2024)
[15] Xu, DS; Song, ST; Su, H., Fixed-time synchronization of large-scale systems via aperiodically intermittent control, Chaos, Solitons Fractals, 173, 2023 · doi:10.1016/j.chaos.2023.113613
[16] Yang, Y.; He, Y.; Wu, M., Intermittent control strategy for synchronization of fractional-order neural networks via piecewise Lyapunov function method, J Frankl Inst, 356, 8, 4648-4676, 2019 · Zbl 1412.93082 · doi:10.1016/j.jfranklin.2018.12.020
[17] Liu, XW; Chen, TP, Synchronization of linearly coupled networks with delays via aperiodically intermittent pinning control, IEEE Trans Neural Netw Learn Syst, 26, 10, 2396-2407, 2015 · doi:10.1109/TNNLS.2014.2383174
[18] Jing, TY; Zhang, DY; Mei, J.; Fan, YL, Finite-time synchronization of delayed complex dynamic networks via aperiodically intermittent control, J Frankl Inst, 356, 10, 5464-5484, 2019 · Zbl 1415.93235 · doi:10.1016/j.jfranklin.2019.03.024
[19] Zhou, JY; Yan, JY; Wu, ZY, Synchronization of fractional-order dynamical network via aperiodically intermittent pinning control, Adv Differ Equ, 165, 1-11, 2019 · Zbl 1458.65118 · doi:10.1186/s13662-018-1939-6
[20] Zhao, FL; Wang, ZP; Wu, HN; Wang, JL; Huang, TW, Output synchronization of reactionCdiffusion neural networks under random packet losses via event-triggered sampled-data control, Neurocomputing, 514, 563-573, 2022 · doi:10.1016/j.neucom.2022.09.105
[21] Zhao, FL; Wang, ZP; Qiao, JF; Wu, HN; Huang, TW, Adaptive event-triggered extended dissipative synchronization of delayed reaction-diffusion neural networks under deception attacks, Neural Netw., 166, 366-378, 2023 · Zbl 1525.93208 · doi:10.1016/j.neunet.2023.07.024
[22] Zhang, TT; Jian, JG, Quantized intermittent control tactics for exponential synchronization of quaternion-valued memristive delayed neural networks, ISA T, 126, 288-299, 2022 · doi:10.1016/j.isatra.2021.07.029
[23] Qin, XJ; Jiang, HJ; Qiu, JL; Ren, Y., Strictly intermittent quantized control for fixed/predefined-time cluster lag synchronization of stochastic multi-weighted complex networks, Neural Netw., 158, 258-271, 2023 · Zbl 1525.93388 · doi:10.1016/j.neunet.2022.10.033
[24] Fan, YJ; Huang, X.; Wang, Z.; Xia, JW; Shen, H., Quantized control for synchronization of delayed fractional-order memristive neural networks, Neural Process. Lett., 52, 403-419, 2020 · doi:10.1007/s11063-020-10259-y
[25] Ren, Y.; Jiang, HJ; Li, JR; Lu, BL, Finite-time synchronization of stochastic complex networks with random coupling delay via quantized aperiodically intermittent control, Neurocomputing, 420, 337-348, 2021 · doi:10.1016/j.neucom.2020.05.103
[26] Liu, FY; Yang, YQ; Wang, F.; Zhang, LZ, Synchronization of fractional-order reaction-diffusion neural networks with Markov parameter jumping: Asynchronous boundary quantization control, Chaos, Solitons Fractals, 173, 2023 · doi:10.1016/j.chaos.2023.113622
[27] Feng, YM; Yang, XS; Song, Q.; Cao, JD, Synchronization of memristive neural networks with mixed delays via quantized intermittent control, Appl. Math. Comput., 339, 874-887, 2018 · Zbl 1428.93008
[28] Si, XD; Wang, Z.; Fan, YJ, Quantized control for finite-time synchronization of delayed fractional-order memristive neural networks: The Gronwall inequality approach, Expert Syst. Appl., 215, 2023 · doi:10.1016/j.eswa.2022.119310
[29] Jia, J.; Zeng, ZG, LMI-based criterion for global Mittag-Leffler lag quasi-synchronization of fractional-order memristor-based neural networks via linear feedback pinning control, Neurocomputing, 412, 226-243, 2020 · doi:10.1016/j.neucom.2020.05.074
[30] Xiao, JY; Li, YT; Wen, SP, Mittag-Leffler synchronization and stability analysis for neural networks in the fractional-order multi-dimension field, Knowl-Based Syst, 231, 107404, 2021 · doi:10.1016/j.knosys.2021.107404
[31] Xu, Y.; Lin, T.; Feng, JQ, Exponential stabilization for fractional intermittent controlled multi-group models with dispersal, Neurocomputing, 445, 220-230, 2021 · doi:10.1016/j.neucom.2021.02.063
[32] Cai, SM; Hou, MY, Quasi-synchronization of fractional-order heterogeneous dynamical networks via aperiodic intermittent pinning control, Chaos, Solitons Fractals, 146, 2021 · Zbl 1498.93008 · doi:10.1016/j.chaos.2021.110901
[33] Hui, M.; Wei, C.; Zhang, J.; Iu, HH; Yao, R.; Bai, L., Finite-time synchronization of fractional-order memristive neural networks via feedback and periodically intermittent control, Commun Nonlinear Sci, 116, 2023 · Zbl 1501.93129 · doi:10.1016/j.cnsns.2022.106822
[34] Podlubny, I., Fractional differential equations, 1999, New York: Academic Press, New York · Zbl 0918.34010
[35] Yang, XS; Feng, YM; Yiu, KFC; Song, Q.; Alsaadi, FE, Synchronization of coupled neural networks with infinite-time distributed delays via quantized intermittent pinning control, Nonlinear Dyn., 94, 2289-2303, 2018 · Zbl 1422.34166 · doi:10.1007/s11071-018-4449-x
[36] Zheng, BB; Wang, ZS, Mittag-Leffler synchronization of fractional-order coupled neural networks with mixed delays, Appl. Math. Comput., 430, 2022 · Zbl 1510.34028
[37] Popa, CA, Mittag-Leffler stability and synchronization of neutral-type fractional-order neural networks with leakage delay and mixed delays, J Frankl Inst, 360, 1, 327-355, 2023 · Zbl 1506.93088 · doi:10.1016/j.jfranklin.2022.11.011
[38] Wang, F.; Yang, YQ, Intermittent synchronization of fractional order coupled nonlinear systems based on a new differential inequality, Phys A Stat Mech Appl, 512, 142-152, 2018 · Zbl 1514.93018 · doi:10.1016/j.physa.2018.08.023
[39] Liu, M.; Jiang, HJ; Hu, C., Finite-time synchronization of delayed dynamical networks via aperiodically intermittent control, J Frankl Inst, 354, 13, 5374-5397, 2017 · Zbl 1395.93348 · doi:10.1016/j.jfranklin.2017.05.030
[40] Wei C, Wang, X.P., Hui, M., Zeng, Z.G.: Quasi-synchronization of fractional multiweighted coupled neural networks via aperiodic intermittent control. IEEE Trans Cybern 3237248 (2023)
[41] Zhang, LZ; Yang, YQ; Wang, F., Lag synchronization for fractional-order memristive neural networks via period intermittent control, Nonlinear Dyn., 89, 1, 367-381, 2017 · Zbl 1374.34216 · doi:10.1007/s11071-017-3459-4
[42] Zhang, S.; Yang, YQ; Sui, X.; Zhang, YN, Synchronization of fractional-order memristive recurrent neural networks via aperiodically intermittent control, Math. Biosci. Eng., 19, 11, 11717-11734, 2022 · Zbl 1510.93285 · doi:10.3934/mbe.2022545
[43] Yang, D.; Ren, G.; Wang, H.; Yu, Y.; Yuan, X., Adaptive control for output projective synchronization of fractional-order hybrid coupled neural networks with mismatched dimensions, Neurocomputing, 558, 2023 · doi:10.1016/j.neucom.2023.126738
[44] Li, H.; Cao, J.; Hu, C.; Zhang, L.; Jiang, H., Adaptive control-based synchronization of discrete-time fractional-order fuzzy neural networks with time-varying delays, Neural Netw., 168, 59-73, 2023 · Zbl 1530.93198 · doi:10.1016/j.neunet.2023.09.019
[45] Han, X.; Cheng, F.; Tang, S.; Zhang, Y.; Fu, Y.; Cheng, W.; Xu, L., Synchronization analysis of fractional-order neural networks with adaptive intermittent-active control, IEEE Access, 10, 75097-75104, 2022 · doi:10.1109/ACCESS.2022.3191801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.