×

Intermittent control strategy for synchronization of fractional-order neural networks via piecewise Lyapunov function method. (English) Zbl 1412.93082

Summary: In this paper, the synchronization problem of fractional-order neural networks (FNNs) with chaotic dynamics is investigated via the intermittent control strategy. Two types of intermittent control methods, the aperiodic one and the periodic one, are applied to achieve the synchronization of the considered systems. Based on the dynamic characteristics of the intermittent control systems, the piecewise Lyapunov function method is employed to derive the synchronization criteria with less conservatism. The results under the aperiodically intermittent control show more generality than the ones via the periodically intermittent control. For each of the aperiodic and periodic cases, a simple controller design process is presented to show how to design the corresponding intermittent controller. Finally, two numerical examples are provided to demonstrate the effectiveness of the obtained theoretical results.

MSC:

93D30 Lyapunov and storage functions
93C15 Control/observation systems governed by ordinary differential equations
34A08 Fractional ordinary differential equations
68T05 Learning and adaptive systems in artificial intelligence
Full Text: DOI

References:

[1] Podlubny, I., Fractional Differential Equations (1999), Academic press: Academic press San Diego · Zbl 0918.34010
[2] Monje, C. A.; Chen, Y. Q.; Vinagre, B. M.; Xue, D. Y.; Feliu, V., Fractional-order Systems and Controls: Fundamentals and Applications (2010), Springer: Springer London · Zbl 1211.93002
[3] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations (2006), Elsevier · Zbl 1092.45003
[4] Gong, P., Distributed tracking of heterogeneous nonlinear fractional-order multi-agent systems with an unknown leader, J. Frankl. Inst., 354, 5, 2226-2244 (2017) · Zbl 1398.93014
[5] Raja, M. A.Z.; Manzar, M. A.; Samar, R., An efficient computational intelligence approach for solving fractional order riccati equations using ANN and SQP, Appl. Math. Model., 39, 3075-3093 (2015) · Zbl 1443.65097
[6] Lodhi, S.; Manzar, M. A.; Raja, M. A.Z., Fractional neural network models for nonlinear riccati systems, Neural Comput. Appl. (2017)
[7] Lundstrom, B. N.; Higgs, M. H.; Spain, W. J.; Fairhall, A. L., Fractional differentiation by neocortical pyramidal neurons, Nature Neurosci., 11, 11, 1335-1342 (2008)
[8] Raja, M. A.Z.; Samar, R.; Manzar, M. A.; Shah, S. M., Design of unsupervised fractional neural network model optimized with interior point algorithm for solving Bagley-Torvik equation, Math. Comput. Simulat., 132, 139-158 (2017) · Zbl 1540.34052
[9] Wang, J.; Wen, Y. Q.; Y. D. Go, Z. Y.Y.; Chen, H., Fractional-order gradient descent learning of BP neural networks with caputo derivative, Neural Netw., 89, 19-30 (2017) · Zbl 1434.68466
[10] Pu, Y. F., Analog circuit realization of arbitrary-order fractional hopfield neural networks: A novel application of fractor to defense against chip cloning attacks, IEEE Access, 4, 5417-5435 (2016)
[11] Raja, M. A.Z.; Khan, J. A.; Qureshi, I. M., Solution of fractional order system of Bagley-Torvik equation using evolutionary computational intelligence, Math. Probl. Eng., 2011, 2, 1-18 (2011) · Zbl 1382.34010
[12] Raja, M. A.Z.; Qureshi, I. M.; Khan, J. A., Swarm intelligent optimized neural networks for solving fractional differential equations, Int. J. Innovat. Comput. Inf. Control, 7, 11, 6301-6318 (2010)
[13] Raja, M. A.Z.; Abbas, S.; Syam, M. I.; Wazwaz, A. M., Design of neuro-evolutionary model for solving nonlinear singularly perturbed boundary value problems, Appl. Soft Comput., 62, 373-394 (2018)
[14] Sabir, Z.; Manzar, M. A.; Raja, M. A.Z.; Sherazd, M.; Wazwaz, A. M., Neuro-heuristics for nonlinear singular thomas-fermi systems, Appl. Soft Comput., 65, 152-169 (2018)
[15] Arena, P.; Caponetto, R.; Fortuna, L.; Porto, D., Bifurcation and chaos in noninteger order cellular neural networks, Int. J. Bifurcat. Chaos, 8, 7, 1527-1539 (1998) · Zbl 0936.92006
[16] Chen, G. R.; Yu, X. H., Chaos Control: Theory and Applications (2003), Springer: Springer Verlag Berlin Heidelberg · Zbl 1029.00015
[17] Zhang, C. K.; He, Y.; Wu, M., Improved global asymptotical synchronization of chaotic Lur’e systems with sampled-data control, IEEE Trans. Circuits Syst. II: Express Br., 56, 4, 320-324 (2009)
[18] Zhang, C. K.; He, Y.; Wu, M., Exponential synchronization of neural networks with time-varying mixed delays and sampled-data, Neurocomputing, 74, 1, 265-273 (2010)
[19] Pham, V.; Jafari, S.; Volos, C.; Giakoumis, A.; Vaidyanathan, S.; Kapitaniak, T., A chaotic system with equilibria located on the rounded square loop and its circuit implementation, IEEE Trans. Circuits Syst. II: Express Br., 63, 9, 878-882 (2016)
[20] Muthukumar, P.; Balasubramaniam, P., Feedback synchronization of the fractional order reverse butterfly-shaped chaotic system and its application to digital cryptography, Nonlinear Dyn., 74, 4, 1169-1181 (2013) · Zbl 1284.34065
[21] Stamova, I.; Stamov, G., Mittag-leffler synchronization of fractional neural networks with time-varying delays and reaction-diffusion terms using impulsive and linear controllers, Neural Netw., 96, 22-32 (2017) · Zbl 1441.93106
[22] Yin, C.; Dadras, S.; Zhong, S. M., Design an adaptive sliding mode controller for drive-response synchronization of two different uncertain fractional-order chaotic systems with fully unknown parameters, J. Frankl. Inst., 349, 3078-3101 (2012) · Zbl 1255.93038
[23] Muthukumar, P.; Balasubramaniam, P.; Ratnavelu, K., Sliding mode control for generalized robust synchronization of mismatched fractional order dynamical systems and its application to secure transmission of voice messages, ISA Trans. (2017)
[24] Mei, J.; Jiang, M. H.; Wang, X. H.; Han, J. L.; Wang, S. T., Finite-time synchronization of drive-response systems via periodically intermittent adaptive control, J. Frankl. Inst., 351, 2691-2710 (2014) · Zbl 1372.93024
[25] Wan, Y.; Cao, J. D., Distributed robust stabilization of linear multi-agent systems with intermittent control, J. Frankl. Inst., 352, 4515-4527 (2015) · Zbl 1395.93471
[26] Zochowski, M., Intermittent dynamical control, Phys. D Nonlinear Phenomena, 145, 3-4, 181-190 (2000) · Zbl 0963.34030
[27] Li, C. D.; Feng, G.; Liao, X. F., Stabilization of nonlinear systems via periodically intermittent control, IEEE Trans. Circuits Syst. II Express Br., 54, 11, 1019-1023 (2007)
[28] Li, H. L.; Hu, C.; Jiang, H. J.; Teng, Z. D.; Jiang, Y. L., Synchronization of fractional-order complex dynamical networks via periodically intermittent pinning control, Chaos Sol. Fractals, 103, 357-363 (2017) · Zbl 1375.93060
[29] Zhang, L. Z.; Yang, Y. Q.; Wang, F., Lag synchronization for fractional-order memristive neural networks via period intermittent control, Nonlinear Dyn., 89, 367-381 (2017) · Zbl 1374.34216
[30] Liu, X. W.; Chen, T. P., Synchronization of nonlinear coupled networks via aperiodically intermittent pinning control, IEEE Trans. Neural Netw. Learn. Syst., 26, 1, 113-126 (2015)
[31] Liu, X. W.; Chen, T. P., Synchronization of complex networks via aperiodically intermittent pinning control, IEEE Trans. Autom. Control, 60, 12, 3316-3321 (2015) · Zbl 1360.93359
[32] Wang, J. A., Synchronization of delayed complex dynamical network with hybrid-coupling via aperiodically intermittent pinning control, J. Frankl. Inst., 354, 1833-1855 (2017) · Zbl 1378.93018
[33] Yu, Z. Y.; Jiang, H. J.; Hu, C.; Fan, X. L., Consensus of second-order multi-agent systems with delayed nonlinear dynamics and aperiodically intermittent communications, Int. J. Control, 90, 5, 909-922 (2016) · Zbl 1366.93027
[34] Li, X. F.; Fang, J. A.; Li, H. Y., Exponential stabilisation of stochastic memristive neural networks under intermittent adaptive control, IET Control Theory Appl., 11, 15, 2432-2439 (2017)
[35] Jiang, Y.; Luo, S. X., Periodically intermittent synchronization of stochastic delayed neural networks, Circuits Syst. Signal Process., 36, 4, 1426-1444 (2017) · Zbl 1370.93319
[36] Chen, W. H.; Zhong, J. C.; Jiang, Z. Y.; Lu, X. M., Periodically intermittent stabilization of delayed neural networks based on piecewise Lyapunov functions/functionals, Circuits Syst. Signal Process., 33, 12, 3757-3782 (2014) · Zbl 1342.93096
[37] Chen, W. H.; Zhong, J. C.; Zheng, W. X., Delay-independent stabilization of a class of time-delay systems via periodically intermittent control, Automatica, 71, 89-97 (2016) · Zbl 1343.93069
[38] Wang, Q. Z.; Tan, G. Z.; He, Y.; Wu, M., Stability analysis of piecewise non-linear systems and its application to chaotic synchronisation with intermittent control, Int. J. Syst. Sci., 48, 14, 3032-3043 (2017) · Zbl 1386.93219
[39] Wan, P.; Jian, J. G.; Mei, J., Periodically intermittent control strategies for \(α\)-exponential stabilization of fractional-order complex-valued delayed neural networks, Nonlinear Dyn., 92, 2, 247-265 (2018) · Zbl 1398.34024
[40] Yang, Y.; He, Y.; Wang, Y.; Wu, M., Stability analysis of fractional-order neural networks: An LMI approach, Neurocomputing, 285, 82-93 (2018)
[41] Liu, Y.; Wang, Z. D.; Liu, X., Global exponential stability of generalized recurrent neural networks with discrete and distributed delays, Neural Netw., 19, 5, 667-675 (2006) · Zbl 1102.68569
[42] Corduneanu, C., Principles of Differential and Integral Equations (1971), Chelsea Publishing Company: Chelsea Publishing Company New York · Zbl 0208.10701
[43] Duarte-Mermoud, M. A.; Aguila-Camacho, N.; Gallegos, J. A.; Castro-Linares, R., Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems, Commun. Nonlinear Sci. Numer. Simulat., 22, 650-659 (2015) · Zbl 1333.34007
[44] Boyd, S.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V., Linear matrix inequalities in system and control theory (1994), Siam · Zbl 0816.93004
[45] Gahinet, P.; Nemirovskii, A., The projective method for solving linear matrix inequalities, Math. Program., 77, 1, 163-190 (1997) · Zbl 0890.90142
[46] Nesterov, Y.; Nemirovskii, A., Interior-point polynomial algorithms in convex programming (1994), Siam · Zbl 0824.90112
[47] Petráš, I., Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation (2011), Springer · Zbl 1228.34002
[48] Samidurai, R.; Anthoni, S. M.; Balachandran, K., Global exponential stability of neutral-type impulsive neural networks with discrete and distributed delays, Nonlinear Anal. Hybrid Syst., 4, 1, 103-112 (2010) · Zbl 1179.93143
[49] Muthukumar, P.; Subramanian, K., Stability criteria for Markovian jump neural networks with mode-dependent additive time-varying delays via quadratic convex combination, Neurocomputing, 205, 5, 75-83 (2016)
[50] Gu, Y. J.; Yu, Y. G.; Wang, H., Synchronization for fractional-order time-delayed memristor-based neural networks with parameter uncertainty, J. Frankl. Inst., 353, 3657-3684 (2016) · Zbl 1347.93013
[51] Samidurai, R.; Manivannan, R., Delay-range-dependent passivity analysis for uncertain stochastic neural networks with discrete and distributed time-varying delays, Neurocomputing, 185, 191-201 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.