×

Relaxed Tseng splitting method with double inertial steps for solving monotone inclusions and fixed point problems. (English) Zbl 07891506

Summary: In this article, we consider the problem of approximating the common solution of monotone inclusions and demicontraction fixed point problems. Firstly, we present Tseng splitting method which incorporates the viscosity technique, new self-adaptive step size and double inertial extrapolations techniques for approximating the solution of the problem in the setting of Hilbert spaces. Unlike some double inertial methods recently studied by many authors, our algorithm does not require computation onto half space, containing the feasible set. The co-coerciveness condition that is often impose on the single-valued operator and the imposition of other stringent assumptions are not required in our method. The suggested method does not require any line search technique. The method uses a new non-monotonic step size which is allowed to increase from iteration to iteration. The step size embeds some relaxation parameters which also improve the rate of convergence of our method. The suggested method only needs one backward computation of the multi-valued operator at each iteration and one forward computation of the single-valued operator; a concept that has not been considered in several splitting methods for strongly convergence in the literature. We prove the strong convergence results of our method under some mild assumptions on the control parameters. We apply our main results to the solutions of several optimization problems. In three numerical experiments, the applicability and efficiency of our new method are compared with some well known methods in the existing literature. Our results improve, unify and generalize several well known results in the literature.

MSC:

65K15 Numerical methods for variational inequalities and related problems
47H05 Monotone operators and generalizations
47J22 Variational and other types of inclusions
47J26 Fixed-point iterations
90C99 Mathematical programming
Full Text: DOI

References:

[1] Abuchu, J.A., Ofem, A.E., Ugwunnadi, G.C., Narain, O.K., Hussain, A.: Hybrid alternated inertial projection and contraction algorithm for solving bilevel variational inequality problems. J. Math., 3185746 (2023). doi:10.1155/2023/3185746
[2] Alakoya, TO; Ogunsola, OJ; Mewomo, OT, An inertial viscosity algorithm for solving monotone variational inclusion and common fixed point problems of strict pseudocontractions, Bol. Soc. Mat. Mex., 29, 31, 2023 · Zbl 1515.65176 · doi:10.1007/s40590-023-00502-6
[3] Bauschke, HH; Borwein, JM, On projection algorithms for solving convex feasibility problems, SIAM Rev., 38, 367-426, 1996 · Zbl 0865.47039 · doi:10.1137/S0036144593251710
[4] Brezis, H.; Chapitre, II, Operateurs maximaux monotones; 1973, North-Holland Math. Stud., 5, 19-51, 1973
[5] Chen, P.; Huang, J.; Zhang, X., A primal dual fixed point algorithm for convex separable minimization with applications to image restoration, Inverse Probl., 29, 2, 2013 · Zbl 1279.65075 · doi:10.1088/0266-5611/29/2/025011
[6] Facchinei, F.; Pang, JS, Finite-dimensional variational inequalities and complementarity problems, 2003, Berlin: Springer, Berlin · Zbl 1062.90001
[7] Hieu, DV; Cho, YJ; Xiao, YB; Kumam, P., Modified extragradient method for pseudomonotone variational inequalities in infinite dimensional Hilbert spaces, Vietnam J. Math., 2020 · Zbl 07425500 · doi:10.1007/s10013-020-00447-7
[8] Kitkuan, D.; Kumam, P.; Martinez-Moreno, J., Generalized Halpern-type forward-backward splitting methods for convex minimization problems with application to image restoration problems, Optimization, 69, 7-8, 1-25, 2020 · Zbl 1528.47009
[9] Konnov, IV, Combined relaxation methods for variational inequalities, 2000, Berlin: Springer, Berlin
[10] Lions, PL; Mercier, B., Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., 16, 964-979, 1979 · Zbl 0426.65050 · doi:10.1137/0716071
[11] Cholamjiak, P.; Hieu, DV; Cho, YJ, Relaxed forward-backward splitting methods for solving variational inclusions and applications, J. Sci. Comput., 88, 85, 2021 · Zbl 1490.65100 · doi:10.1007/s10915-021-01608-7
[12] Gibali, A.; Thong, DV, Tseng type methods for solving inclusion problems and its applications, Calcolo, 55, 4, 49, 2018 · Zbl 1482.65096 · doi:10.1007/s10092-018-0292-1
[13] Gibali, A.; Hieu, DV, A new inertial double-projection method for solving variational inequalities, J. fixed point theory appl., 21, 97, 2019 · Zbl 07152628 · doi:10.1007/s11784-019-0726-7
[14] Goebel, K.; Reich, S., Uniform convexity, hyperbolic geometry, and nonexpansive mappings, 1984, New York: Marcel Dekker, New York · Zbl 0537.46001
[15] Iiduka, H., Acceleration method for convex optimization over the fixed point set of a nonexpansive mapping, Math. Program., 149, 131-165, 2015 · Zbl 1338.90301 · doi:10.1007/s10107-013-0741-1
[16] Kumam, W.; Rehman, H.; Kumam, P., A new class of computationally efficient algorithms for solving fixed-point problems and variational inequalities in real Hilbert spaces, Journal of Inequalities and Applications, 2023, 48, 2023 · Zbl 1532.90132 · doi:10.1186/s13660-023-02948-8
[17] Liu, H.; Yang, J., Weak convergence of iterative methods for solving quasimonotone variational inequalities, Comput. Optim. Appl., 77, 491-508, 2020 · Zbl 07342388 · doi:10.1007/s10589-020-00217-8
[18] Mainge, PE, A hybrid extragradient-viscosity method for monotone operators and fixed point problems, SIAM J. Control. Optim., 47, 3, 1499-1515, 2008 · Zbl 1178.90273 · doi:10.1137/060675319
[19] Moreau, JJ, Proximite et dualite dans un espace Hilbertien, Bull. Soc. Math. Fr., 93, 273-299, 1965 · Zbl 0136.12101 · doi:10.24033/bsmf.1625
[20] Marino, G.; Xu, HK, A general iterative method for nonexpansive mapping in Hilbert spaces, J. Math. Anal. Appl., 318, 43-52, 2006 · Zbl 1095.47038 · doi:10.1016/j.jmaa.2005.05.028
[21] Ofem, AE; Isik, H.; Ugwunnadi, GC; George, R.; Narain, OK, Approximating the solution of a nonlinear delay integral equation by an efficient iterative algorithm in hyperbolic spaces, AIMS Mathematics, 8, 7, 14919-14950, 2023 · doi:10.3934/math.2023762
[22] Izuchukwu, C.; Reich, S.; Shehu, Y.; Taiwo, A., Strong convergence of forward-reflected-backward splitting methods for solving monotone inclusions with applications to image restoration and optimal control, J. Sci. Comput., 94, 73, 2023 · Zbl 1529.47114 · doi:10.1007/s10915-023-02132-6
[23] Ofem, A.E., Mebawondu, A.A., Ugwunnadi, G.C., et al.: A modified subgradient extragradient algorithm-type for solving quasimonotone variational inequality problems with applications. J. Inequal. Appl. 2023(73) (2023). doi:10.1186/s13660-023-02981-7 · Zbl 1532.90145
[24] Ofem, AE; Işik, H.; Ali, F.; Ahmad, J., A new iterative approximation scheme for Reich-Suzuki type nonexpansive operators with an application, J. Inequal. Appl., 2022, 28, 2022 · Zbl 1506.47112 · doi:10.1186/s13660-022-02762-8
[25] Ofem, AE; Abuchu, JA; George, R.; Ugwunnadi, GC; Narain, OK, Some new results on convergence, weak \(w^2\)-stability and data dependence of two multivalued almost contractive mappings in hyperbolic spaces, Mathematics, 10, 20, 3720, 2022 · doi:10.3390/math10203720
[26] Ofem, AE; Udo, MO; Joseph, O.; George, R.; Chikwe, CF, Convergence analysis of a new implicit iterative scheme and its application to delay Caputo fractional differential equations, Fractal and Fractional, 7, 3, 212, 2023 · doi:10.3390/fractalfract7030212
[27] Okeke, GA; Ofem, AE; Abdeljawad, T.; Alqudah, AM; Khan, A., A solution of a nonlinear Volterra integral equation with delay via a faster iteration method, AIMS Mathematics, 8, 1, 102-124, 2023 · doi:10.3934/math.2023005
[28] Osilike, MO; Aniagbosor, SC, Weak and strong convergence for fixed points of asymptotically nonexpansive mappings, Math. Comput. Model., 32, 1181-1191, 2000 · Zbl 0971.47038 · doi:10.1016/S0895-7177(00)00199-0
[29] Passty, GB, Ergodic convergence to a zero of the sum of monotone operators in Hilbert space, J. Math. Anal. Appl., 72, 383-390, 1979 · Zbl 0428.47039 · doi:10.1016/0022-247X(79)90234-8
[30] Polyak, BT, Some methods of speeding up the convergence of iteration methods, USSR Comput., Math. Math. Phys., 4, 1-17, 1964 · Zbl 0147.35301 · doi:10.1016/0041-5553(64)90137-5
[31] Shehu, Y.; Yao, JC, Rate of convergence for inertial iterative method for countable family of certain quasi-nonexpansive mappings, J. Nonlinear Convex Anal., 21, 533-541, 2020 · Zbl 07347501
[32] Rockafellar, R., On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc., 149, 1, 75-88, 1970 · Zbl 0222.47017 · doi:10.1090/S0002-9947-1970-0282272-5
[33] Shehu, Y.; Iyiola, OS, Projection methods with alternating inertial steps for variational inequalities: weak and linear convergence, Appl. Numer. Math., 157, 315-337, 2020 · Zbl 1445.49004 · doi:10.1016/j.apnum.2020.06.009
[34] Tan, B.; Fan, J.; Li, S., Self-adaptive inertial extragradient algorithms for solving variational inequality problems, Comput. Appl. Math., 40, 19, 2021 · Zbl 1523.47072 · doi:10.1007/s40314-020-01393-3
[35] Tan, B.; Cho, SY, Strong convergence of inertial forward-backward methods for solving monotone inclusions, Appl. Anal., 101, 15, 5386-5414, 2022 · Zbl 07584317 · doi:10.1080/00036811.2021.1892080
[36] Tan, B.; Qin, X., Adaptive modified inertial projection and contraction methods for pseudomonotone variational insinuates, J. Appl. Numer. Optimization, 4, 2, 221-243, 2022 · doi:10.23952/jano.4.2022.2.08
[37] Tan, B.; Qin, X.; Yao, J., Strong convergence of inertial projection and contraction methods for pseudomonotone variational inequalities with applications to optimal control problems, J. Global Optim., 82, 523-557, 2022 · Zbl 1497.47100 · doi:10.1007/s10898-021-01095-y
[38] Thong, DV, Viscosity approximation methods for solving fixed point problems and split common fixed point problems, J. fixed point theory appl., 19, 1481-1499, 2017 · Zbl 1453.47021 · doi:10.1007/s11784-016-0323-y
[39] Thong, DV; Dung, VT; Anh, PK; Thang, HV, A single projection algorithm with double inertial extrapolation steps for solving pseudomonotone variational inequalities in Hilbert space, J. Comput. Appl. Math., 426, 2023 · Zbl 1512.65114 · doi:10.1016/j.cam.2023.115099
[40] Thong, DV; Hieu, DV; Rassias, TM, Self adaptive inertial subgradient extragradient algorithms for solving pseudomonotone variational inequality problems, Optim. Lett., 14, 115-144, 2020 · Zbl 1433.49016 · doi:10.1007/s11590-019-01511-z
[41] Thong, DV; Liu, LL; Dong, QL; Long, LV; Tuan, PA, Fast relaxed inertial Tseng’s method-based algorithm for solving variational inequality and fixed point problems in Hilbert spaces, J. Comput. Appl. Math., 418, 2023 · Zbl 1497.65103 · doi:10.1016/j.cam.2022.114739
[42] Thong, DV; Hieu, DV, Some extragradient-viscosity algorithms for solving variational inequality problems and fixed point problems, Numer. Algorithms, 82, 76-789, 2019 · Zbl 1441.47079 · doi:10.1007/s11075-018-0626-8
[43] Thong, DV; Vinh, NT, Inertia methods for fixed point problems and zero point problems of the sum of two monotone mappings, Optimization, 68, 5, 1037-1072, 2019 · Zbl 07068096 · doi:10.1080/02331934.2019.1573240
[44] Tian, M., Tong, M.: Self-adaptive subgradient extragradient method with inertial modification for solving monotone variational inequality problems and quasinonexpansive fixed point problems. Journal of Inequalities and Applications 2019(7) (2019) · Zbl 1499.47032
[45] Tseng, P., A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control. Optim., 38, 431-446, 2000 · Zbl 0997.90062 · doi:10.1137/S0363012998338806
[46] Uzor, VA; Alakoya, TO; Mewomo, OT, Strong convergence of a self-adaptive inertial Tseng’s extragradient method for pseudomonotone variational inequalities and fixed point problems, Open Math., 20, 234-257, 2022 · Zbl 1485.65072 · doi:10.1515/math-2022-0030
[47] Wang, Z.; Lei, Z.; Long, X.; Chen, Z., A modified Tseng splitting method with double inertial steps for solving monotone inclusion problems., 96, 92, 2023 · Zbl 07730759 · doi:10.1007/s10915-023-02311-5
[48] Wang, K.; Wang, Y.; Iyiola, OS; Shehu, Y., Double inertial projection method for variational inequalities with quasi-monotonicity, Optimization, 2022 · Zbl 07814977 · doi:10.1080/02331934.2022.2123241
[49] Xu, HK, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc., 66, 240-256, 2002 · Zbl 1013.47032 · doi:10.1112/S0024610702003332
[50] Yang, J.; Cholamjiak, P.; Sunthrayuth, P., Modified Tseng’s splitting algorithms for the sum of two monotone operators in Banach spaces, AIMS Mathematics, 6, 4873-4900, 2021 · Zbl 1484.47177 · doi:10.3934/math.2021286
[51] Yang, J.; Liu, H., Strong convergence result for solving monotone variational inequalities in Hilbert space, Numer. Algorithms, 80, 741-752, 2019 · Zbl 1493.47107 · doi:10.1007/s11075-018-0504-4
[52] Yang, J.; Liu, H., A modified projected gradient method for monotone variational inequalities, J. Optim. Theory Appl., 179, 197-211, 2018 · Zbl 1506.47099 · doi:10.1007/s10957-018-1351-0
[53] Yao, Y.; Iyiola, OS; Shehu, Y., Subgradient extragradient method with double inertial steps for variational inequalities, J. Sci. Comput., 90, 71, 2022 · Zbl 07458297 · doi:10.1007/s10915-021-01751-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.