×

A defect correction weak Galerkin finite element method for the Kelvin-Voigt viscoelastic fluid flow model. (English) Zbl 07890930

Summary: In this paper, we present a defect correction weak Galerkin finite element method for solving the Kelvin-Voigt viscoelastic fluid flow model, which can guarantee that the discrete velocity is globally divergence-free. The second-order Crank-Nicolson difference scheme is considered for temporal discretization. In particular, combined with the defect correction method, the numerical oscillation effect is reduced at high Reynolds number. Our algorithm not only gives the stability and convergence of the numerical solutions of velocity and pressure but also is uniformly valid at the retardation time \(\kappa \to 0\). Several numerical experiments are performed to verify the method has good behaviors.

MSC:

65Nxx Numerical methods for partial differential equations, boundary value problems
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
76Mxx Basic methods in fluid mechanics
Full Text: DOI

References:

[1] Pavlovskii, V. A., Theoretical description of weak aqueous polymer solutions, Sov. Phys. Dokl., 16, 853, 1971
[2] Oskolkov, A. P., Uniqueness and global solvability for boundary-value problems for the equations of motion of water solutions of polymers, Zap. Nauchn. Semin. POMI, 38, 98-136, 1973
[3] Cao, Y. P.; Lunasin, E. M.; Titi, E. S., Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models, Commun. Math. Sci., 4, 4, 823-848, 2006 · Zbl 1127.35034
[4] M. Burtscher, I. Szczyrba, Numerical modeling of brain dynamics in traumatic situations-impulsive translations, in: The 2005 International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences, 2005, pp. 205-211.
[5] M. Burtscher, I. Szczyrba, Computational simulation and visualization of traumatic brain injuries, in: 2006 International Conference on Modeling, 2006, pp. 101-107, Simulation and Visualization Methods.
[6] Cotter, C. S.; Smolarkiewicz, P. K.; Szczyrba, I. N., A viscoelastic fluid model for brain injuries, Internat. J. Numer. Methods Fluids, 40, 303-311, 2002 · Zbl 1058.76532
[7] Ladyzhenskaya, O. A., The Mathematical Theory of Viscous Incompressible Flow, 1969, Gordon & Breach · Zbl 0184.52603
[8] Oskolkov, A. P., Theory of nonstationary flows of Kelvin-Voigt fluids, J. Sov. Math., 28, 5, 751-758, 1985 · Zbl 0561.76017
[9] Oskolkov, A. P., Initial-boundary value problems for equations of motion of Kelvin-Voigt fluids and Oldroyd fluids, Trudy Mat. Inst. Imeni VA Stekl., 179, 126-164, 1988 · Zbl 0674.76004
[10] Oskolkov, A. P.; Shadiev, R. D., Nonlocal problems in the theory of the motion equations of Kelvin-Voigt fluids, J. Sov. Math., 62, 2, 2699-2723, 1992 · Zbl 0784.76006
[11] Oskolkov, A. P.; Shadiev, R. D., Towards a theory of global solvability on \([ 0 , \infty )\) of initial-boundary value problems for the equations of motion of Oldroyd and Kelvin-Voigt fluids, J. Math. Sci., 68, 2, 240-253, 1994 · Zbl 0850.76039
[12] Bajpai, S.; Nataraj, N.; Pani, A. K.; Damazio, P.; Yuan, J. Y., Semidiscrete Galerkin method for equations of motion arising in Kelvin-Voigt model of viscoelastic fluid flow, Numer. Methods Partial Differential Equations, 29, 3, 857-883, 2013 · Zbl 1266.76028
[13] Pany, A. K.; Bajpai, S.; Pani, A. K., Optimal error estimates for semidiscrete Galerkin approximations to equations of motion described by Kelvin-Voigt viscoelastic fluid flow model, J. Comput. Appl. Math., 302, 234-257, 2016 · Zbl 1381.76194
[14] Pany, A. K., Fully discrete second-order backward difference method for Kelvin-Voigt fluid flow model, Numer. Algorithms, 78, 4, 1061-1086, 2018 · Zbl 1408.76369
[15] Zhang, T.; Duan, M. M., One-level and multilevel space-time finite element method for the viscoelastic Kelvin-Voigt model, Math. Methods Appl. Sci., 43, 7, 4744-4768, 2020 · Zbl 1446.65122
[16] Zhang, T.; Duan, M. M., Stability and convergence analysis of stabilized finite element method for the Kelvin-Voigt viscoelastic fluid flow model, Numer. Algorithms, 87, 3, 1201-1228, 2021 · Zbl 1476.65262
[17] Bajpai, S.; Goswami, D.; Ray, K., Fully discrete finite element error analysis of a discontinuous Galerkin method for the Kelvin-Voigt viscoelastic fluid model, Comput. Math. Appl., 130, 69-97, 2023 · Zbl 1524.76208
[18] Duan, M. M.; Yang, Y.; Feng, M. F., A weak Galerkin finite element method for the Kelvin-Voigt viscoelastic fluid flow model, Appl. Numer. Math., 184, 406-430, 2023 · Zbl 1505.65261
[19] Wang, J. P.; Ye, X., A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241, 1, 103-115, 2013 · Zbl 1261.65121
[20] Wang, J. P.; Ye, X., A weak Galerkin mixed finite element method for second-order elliptic problems, Math. Comp., 83, 289, 2101-2126, 2014 · Zbl 1308.65202
[21] Mu, L.; Wang, J. P.; Wang, Y. Q.; Ye, X., A computational study of the weak Galerkin method for second-order elliptic equations, Numer. Algorithms, 63, 4, 753-777, 2013 · Zbl 1271.65140
[22] Mu, L.; Wang, J. P.; Ye, X., Weak Galerkin finite element methods on polytopal meshes, Int. J. Numer. Anal. Model., 12, 1, 31-53, 2015 · Zbl 1332.65172
[23] Wang, J. P.; Ye, X., A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42, 1, 155-174, 2016 · Zbl 1382.76178
[24] Chen, G.; Feng, M. F.; Xie, X. P., Robust globally divergence-free weak Galerkin methods for Stokes equations, J. Comput. Math., 34, 5, 549-572, 2016 · Zbl 1389.76027
[25] Mu, L.; Wang, J. P.; Ye, X.; Zhang, S. Y., A discrete divergence free weak Galerkin finite element method for the Stokes equations, Appl. Numer. Math., 125, 172-182, 2018 · Zbl 1378.76051
[26] Liu, X.; Li, J.; Chen, Z. X., A weak Galerkin finite element method for the Navier-Stokes equations, J. Comput. Appl. Math., 333, 442-457, 2018 · Zbl 1395.76040
[27] Hu, X. Z.; Mu, L.; Ye, X., A weak Galerkin finite element method for the Navier-Stokes equations, J. Comput. Appl. Math., 362, 614-625, 2019 · Zbl 1422.65389
[28] Zhang, B. J.; Yang, Y.; Feng, M. F., A \(C^0\)-weak Galerkin finite element method for the two-dimensional Navier-Stokes equations in stream-function formulation, J. Comput. Math., 38, 2, 310, 2020 · Zbl 1463.65383
[29] Brooks, A. N.; Hughes, T. J., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 32, 1-3, 199-259, 1982 · Zbl 0497.76041
[30] Chen, G.; Feng, M. F.; Zhou, H., Local projection stabilized method on unsteady Navier-Stokes equations with high Reynolds number using equal order interpolation, Appl. Math. Comput., 243, 465-481, 2014 · Zbl 1335.76033
[31] Labovschii, A., A defect correction method for the time-dependent Navier-Stokes equations, Numer. Methods Partial Differential Equations, 25, 1, 1-25, 2009 · Zbl 1394.76087
[32] Zhang, Y. Z.; Hou, Y. R.; Jia, H. E., Subgrid stabilized defect-correction method for a steady-state natural convection problem, Comput. Math. Appl., 67, 3, 497-514, 2014 · Zbl 1381.76210
[33] Si, Z. Y.; He, Y. N.; Wang, Y. X., Modified characteristics mixed defect-correction finite element method for the time-dependent Navier-Stokes problems, Appl. Anal., 94, 4, 701-724, 2015 · Zbl 1446.76096
[34] Shang, Y. Q., A new two-level defect-correction method for the steady Navier-Stokes equations, J. Comput. Appl. Math., 381, Article 113009 pp., 2021 · Zbl 1486.65264
[35] Aggul, M., Defect-deferred correction method based on a subgrid artificial viscosity modeling, J. Math. Anal. Appl., 497, 2, Article 124878 pp., 2021 · Zbl 1464.76053
[36] Brenner, S. C.; Scott, L. R., The Mathematical Theory of Finite Element Methods, 1994, Springer-Verlag · Zbl 0804.65101
[37] Di Pietro, D. A.; Ern, A., Mathematical Aspects of Discontinuous Galerkin Methods, 2012, Springer-Verlag · Zbl 1231.65209
[38] Han, Y. H.; Xie, X. P., Robust globally divergence-free weak Galerkin finite element methods for natural convection problems, Commun. Comput. Phys., 26, 4, 1039-1070, 2019 · Zbl 07418048
[39] Durán, R., (Mixed Finite Element Methods. Mixed Finite Element Methods, Lectures given at the CIME Summer School held in Cetraro, Italy, Series in Information and Computation Science, vol. 42, 2006, Springer-Verlag: Springer-Verlag Berlin), 44
[40] Heywood, J. G.; Rannacher, R., Finite-element approximation of the nonstationary Navier-Stokes problem. Part IV: Error analysis for second-order time discretization, SIAM J. Numer. Anal., 27, 2, 353-384, 1990 · Zbl 0694.76014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.