×

A robust numerical scheme for solving Riesz-tempered fractional reaction-diffusion equations. (English) Zbl 07890846

Summary: The Fractional Diffusion Equation (FDE) is a mathematical model that describes anomalous transport phenomena characterized by non-local and long-range dependencies which deviate from the traditional behavior of diffusion. Solving this equation numerically is challenging due to the need to discretize complicated integral operators which increase the computational costs. These complexities are exacerbated by nonlinear source terms, nonsmooth data and irregular domains. In this study, we propose a second order Exponential Time Differencing finite Element Method (ETD-RDP-FEM) to efficiently solve nonlinear FDE, posed in irregular domains. This approach discretizes matrix exponentials using a rational function with real and distinct poles, resulting in an L-stable scheme that damps spurious oscillations caused by non-smooth initial data. The method is shown to outperform existing second-order methods for FDEs with a higher accuracy and faster computational time.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35Rxx Miscellaneous topics in partial differential equations
35Kxx Parabolic equations and parabolic systems

References:

[1] Sun, H.; Zhang, Y.; Baleanu, D.; W. Chen, W.; Chen, Y., A new collection of real-world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., 64, 213-231, 2018 · Zbl 1509.26005
[2] Kumar, P.; Baleanu, D.; Erturk, V. S.; Inc, M.; Govindaraj, V., A delayed plant disease model with Caputo fractional derivatives, Adv. Contin. Discrete Models, 1, 1-22, 2022
[3] Partohaghighi, M.; Akgül, A.; Guran, L.; Bota, M. F., Novel mathematical modelling of platelet-poor plasma arising in a blood coagulation system with the fractional Caputo-Fabrizio derivative, Symmetry, 14, 6, 1128, 2022
[4] Hashemi, M. S.; Partohaghighi, M.; Ahmad, H., Mathematical modelings of the human liver and hearing loss systems with fractional derivatives, Int. J. Biomath., 16, 01, Article 2250068 pp., 2023 · Zbl 1505.92038
[5] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations, 1-521, 2006 · Zbl 1092.45003
[6] Podlubny, I., Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications, 1998, Academic Press · Zbl 0922.45001
[7] Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J. J., Fractional Calculus: Models and Numerical Methods, 1-383, 2012, 3 · Zbl 1248.26011
[8] Iyiola, O. S.; Zaman, F. D., A fractional diffusion equation model for cancer tumor, AIP Adv., 4, 10, 2014
[9] Mainardi, F., Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, 1-368, 2010, World Scientific · Zbl 1210.26004
[10] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1, 1-77, 2000 · Zbl 0984.82032
[11] Furati, K. M.; Iyiola, O. S.; Kirane, M., An inverse problem for a generalized fractional diffusion, Appl. Math. Comput., 249, 24-31, 2014 · Zbl 1338.35493
[12] Etefa, M.; Guerekata, G.; Ngnepieba, P.; Iyiola, O. S., On a generalized fractional differential Cauchy problem, Malaya J. Mat., 11, 1, 80-93, 2023
[13] Sun, H.; Chen, W.; Chen, Y., Modeling anomalous diffusion in biological tissues using a fractional-order reaction-diffusion model, J. Math. Biol., 82, 4, 42, 2021
[14] Ionescu, C.; Lopes, A.; Copot, D.; Machado, J.; Bates, J., The role of fractional calculus in modeling biological phenomena: A review, Commun. Nonlinear Sci. Numer. Simul., 51, 141-159, 2017 · Zbl 1467.92050
[15] Liang, J.; Li, Y.; Baleanu, D., Time-fractional mathematical models for anomalous transport phenomena in biological tissues, Commun. Nonlinear Sci. Numer. Simul., 93, Article 105498 pp., 2021
[16] Iyiola, O. S., Exponential Integrator Methods for Nonlinear Fractional Reaction-Diffusion Models, 2017, University of WIsconsin: University of WIsconsin WI
[17] Sabzikar, F.; Meerschaert, M. M.; Chen, J., Tempered fractional calculus, J. Comput. Phys., 293, 14-28, 2015 · Zbl 1349.26017
[18] Guo, X.; Li, Y.; Wang, H., A high order finite difference method for tempered fractional diffusion equations with applications to the CGMY model, SIAM J. Sci. Comput., 40, 5, A3322-A3343, 2018 · Zbl 1407.65106
[19] Celik, C.; Duman, M., Finite element method for a symmetric tempered fractional diffusion equation, Appl. Numer. Math., 120, 270-286, 2017 · Zbl 1370.65051
[20] Jin, B.; Lazarov, R.; Zhou, Z., A Petrov-Galerkin finite element method for fractional convection-diffusion equations, SIAM J. Numer. Anal., 54, 1, 2016 · Zbl 1335.65092
[21] Lian, Y.; Ying, Y.; Tang, S.; Lin, S.; Wagner, G., A Petrov-Galerkin finite element method for the fractional advection-diffusion equation, Comput. Methods Appl. Mech. Engrg., 309, 388-410, 2016 · Zbl 1439.65090
[22] Li, L.; Xu, D.; Luo, M., Alternating direction implicit Galerkin finite element method for the two-dimensional fractional diffusion-wave equation, J. Comput. Phys., 255, 471-485, 2013 · Zbl 1349.65456
[23] Cox, S. M.; Matthews, P. C., Exponential time differencing for stiff systems, J. Comput. Phys., 176, 430-455, 2002 · Zbl 1005.65069
[24] Kassam, Aly-Khan; Trefethen, Lloyd N., Fourth-order time-stepping for stiff PDEs, SIAM J. Sci. Comput., 26, 1214-1233, 2005 · Zbl 1077.65105
[25] Asante-Asamani, E. O., An exponential time differencing scheme with a real distinct poles rational function for advection-diffusion-reaction systems, 2016 · Zbl 1333.65106
[26] Asante-Asamani, E. O.; Khaliq, A. Q.M.; Wade, B. A., A real distinct poles exponential time differencing scheme for reaction-diffusion systems, J. Comput. Appl. Math., 299, 19, 24-34, 2016 · Zbl 1333.65106
[27] Iyiola, O. S.; Asante-Asamani, E. O.; Furati, K. M.; Khaliq, A. Q.M.; Wade, B. A., Efficient time discretization scheme for nonlinear space fractional reaction-diffusion equations, Int. J. Comput. Math., 95, 9, 1274-1291, 2018 · Zbl 1499.65395
[28] Asante-Asamani, E. O.; Kleefeld, A.; Wade, B. A., A second-order exponential time differencing scheme for non-linear reaction-diffusion systems with dimensional splitting, J. Comput. Phys., 415, 109490, 6, 2020 · Zbl 1440.65081
[29] Iyiola, O. S.; Wade, B. A., Exponential integrator methods for systems of non-linear space-fractional models with super-diffusion processes in pattern formation, Comput. Math. Appl., 75, 12, 3719-3736, 2018 · Zbl 1419.65022
[30] Ali, U.; Abdullah, F.; Ismail, A., Crank-Nicolson finite difference method for two-dimensional fractional sub-diffusion equation, J. Interpolat. Approx. Sci. Comput., 2, 18-29, 2017
[31] Sweilam, N.; Moharram, H.; Moniem, N., A parallel Crank-Nicolson finite difference method for time-fractional parabolic equation, J. Numer. Math., 22, 4, 363-382, 2014 · Zbl 1302.65237
[32] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, 1972, US Government Printing Office · Zbl 0543.33001
[33] Atangana, Abdon, Fractional operators and their applications, (Garra, R.; Gorenflo, R.; Polito, F.; Tomovski, Z., Hilfer-Prabhakar Derivatives and Some Applications. Hilfer-Prabhakar Derivatives and Some Applications, Applied Mathematics and Computation, vol. 242, 2014), 576-589 · Zbl 1458.76098
[34] Meerschaert, M. M.; Sabzikar, F., Stochastic integration for tempered fractional Brownian motion, Stochastic Process. Appl., 124, 2363-2387, 2014 · Zbl 1329.60166
[35] Leveque, R. J., Finite Difference Methods for Ordinary and Partial Differential Equations, 1-356, 2007, Society for Industrial and Applied Mathematics · Zbl 1127.65080
[36] Afolabi, Y. O.; Biala, T. A.; Iyiola, O. S.; Khaliq, A. Q.M.; Wade, B. A., A second-order Crank-Nicolson-type scheme for nonlinear space-time reaction-diffusion equations on time-graded meshes, Fractal Fract., 7, 1, 40, 2022
[37] Wang, K.; Zhou, Z., High-order time-stepping schemes for semilinear subdiffusion equations, SIAM J. Numer. Anal., 58, 3226-3250, 2020 · Zbl 1452.65252
[38] Mustapha, K., An L1 approximation for a fractional reaction-diffusion equation, a second-order error analysis over time-graded meshes, SIAM J. Numer. Anal., 58, 1319-1338, 2020 · Zbl 1434.65129
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.