×

High-order time stepping schemes for semilinear subdiffusion equations. (English) Zbl 1452.65252

High-order \(k\)-step backward differentiation formulae (BDFk) are developed for solving the initial-boundary value problem for the semilinear subdiffusion equation. The convolution quadrature is applied generated by BDFk to discretize the time-fractional derivative of order \(\alpha\in (0, 1)\) and the starting steps are modified in order to achieve an optimal convergence rate. The main result of the paper is to derive a convergence order \(\mathcal{O}(\Delta t^{\min (1,1 + 2\alpha -\epsilon)})\) for the corrected BDFk scheme without imposing further assumptions on the regularity of the solution. The optimal order convergence is achieved by splitting the nonlinear potential term into an irregular linear part and a smoother nonlinear part and using the generating function technique. Numerical examples are provided for the time-fractional Allen-Cahn equation to support the theoretical results.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
35R11 Fractional partial differential equations
26A33 Fractional derivatives and integrals

References:

[1] M. Al-Maskari and S. Karaa, Numerical approximation of semilinear subdiffusion equations with nonsmooth initial data, SIAM J. Numer. Anal., 57 (2019), pp. 1524-1544. · Zbl 1422.65246
[2] A. A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 280 (2015), pp. 424-438. · Zbl 1349.65261
[3] N. Y. Bakaev, Maximum norm resolvent estimates for elliptic finite element operators, BIT, 41 (2001), pp. 215-239. · Zbl 0979.65097
[4] N. Y. Bakaev, V. Thomée, and L. B. Wahlbin, Maximum-norm estimates for resolvents of elliptic finite element operators, Math. Comp., 72 (2003), pp. 1597-1610. · Zbl 1028.65113
[5] B. Berkowitz, J. Klafter, R. Metzler, and H. Scher, Physical pictures of transport in heterogeneous media: Advection-dispersion, random-walk, and fractional derivative formulations, Water Resources Research, 38 (2002), pp. 9-1.
[6] S. Chen, J. Shen, Z. Zhang, and Z. Zhou, A spectrally accurate approximation to subdiffusion equations using the log orthogonal functions, SIAM J. Sci. Comput., 42 (2020), pp. A849-A877. · Zbl 1434.65291
[7] F. Chen, Q. Xu, and J. S. Hesthaven, A multi-domain spectral method for time-fractional differential equations, J. Comput. Phys., 293 (2015), pp. 157-172. · Zbl 1349.65506
[8] M. Crouzeix and V. Thomée, On the discretization in time of semilinear parabolic equations with nonsmooth initial data, Math. Comp., 49 (1987), pp. 359-377. · Zbl 0632.65097
[9] E. Cuesta, C. Lubich, and C. Palencia, Convolution quadrature time discretization of fractional diffusion-wave equations, Math. Comp., 75 (2006), pp. 673-696. · Zbl 1090.65147
[10] J. Douglas, Jr., T. Dupont, and L. Wahlbin, The stability in \(L^q\) of the \(L^2\)-projection into finite element function spaces, Numer. Math., 23 (1974/75), pp. 193-197. · Zbl 0297.41022
[11] Q. Du, J. Yang, and Z. Zhou, Time-fractional Allen-Cahn equations: Analysis and numerical methods, J. Sci. Comput., in press; arXiv:1906.06584.
[12] C. M. Elliott and S. Larsson, Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation, Math. Comp., 58 (1992), pp. 603-630, S33-S36. · Zbl 0762.65075
[13] G. Gao, Z. Sun, and H. Zhang, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J. Comput. Phys., 259 (2014), pp. 33-50. · Zbl 1349.65088
[14] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin, 1981. · Zbl 0456.35001
[15] B. Jin, R. Lazarov, and Z. Zhou, Error estimates for a semidiscrete finite element method for fractional order parabolic equations, SIAM J. Numer. Anal., 51 (2013), pp. 445-466. · Zbl 1268.65126
[16] B. Jin, R. Lazarov, and Z. Zhou, An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data, IMA J. Numer. Anal., 36 (2016), pp. 197-221. · Zbl 1336.65150
[17] B. Jin, R. Lazarov, and Z. Zhou, Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data, SIAM J. Sci. Comput., 38 (2016), pp. A146-A170. · Zbl 1381.65082
[18] B. Jin, R. Lazarov, and Z. Zhou, Numerical methods for time-fractional evolution equations with nonsmooth data: A concise overview, Comput. Methods Appl. Mech. Engrg., 346 (2019), pp. 332-358. · Zbl 1440.65138
[19] B. Jin, B. Li, and Z. Zhou, An analysis of the Crank-Nicolson method for subdiffusion, IMA J. Numer. Anal., 38 (2017), pp. 518-541. · Zbl 1497.65175
[20] B. Jin, B. Li, and Z. Zhou, Correction of high-order BDF convolution quadrature for fractional evolution equations, SIAM J. Sci. Comput., 39 (2017), pp. A3129-A3152. · Zbl 1379.65078
[21] B. Jin, B. Li, and Z. Zhou, Numerical analysis of nonlinear subdiffusion equations, SIAM J. Numer. Anal., 56 (2018), pp. 1-23. · Zbl 1422.65228
[22] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006. · Zbl 1092.45003
[23] S. C. Kou et al., Stochastic modeling in nanoscale biophysics: Subdiffusion within proteins, Ann. Appl. Statist., 2 (2008), pp. 501-535. · Zbl 1400.62272
[24] B. Li, K. Wang, and Z. Zhou, Long-time accurate symmetrized implicit-explicit BDF methods for a class of parabolic equations with non-self-adjoint operators, SIAM J. Numer. Anal., 58 (2020), pp. 189-210. · Zbl 07154062
[25] X. Li and C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal., 47 (2009), pp. 2108-2131. · Zbl 1193.35243
[26] H.-l. Liao, D. Li, and J. Zhang, Sharp error estimate of the nonuniform \(L\/1\) formula for linear reaction-subdiffusion equations, SIAM J. Numer. Anal., 56 (2018), pp. 1112-1133. · Zbl 1447.65026
[27] Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), pp. 1533-1552. · Zbl 1126.65121
[28] C. Lubich, Discretized fractional calculus, SIAM J. Math. Anal., 17 (1986), pp. 704-719. · Zbl 0624.65015
[29] C. Lubich, Convolution quadrature and discretized operational calculus. i., Numer. Math., 52 (1988), pp. 129-145. · Zbl 0637.65016
[30] C. Lubich, I. H. Sloan, and V. Thomée, Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term, Math. Comp., 65 (1996), pp. 1-17. · Zbl 0852.65138
[31] W. McLean and K. Mustapha, Time-stepping error bounds for fractional diffusion problems with non-smooth initial data, J. Comput. Phys., 293 (2015), pp. 201-217. · Zbl 1349.65469
[32] R. Metzler, J.-H. Jeon, A. G. Cherstvy, and E. Barkai, Anomalous diffusion models and their properties: Non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking, Phys. Chem. Chem. Phys., 16 (2014), pp. 24128-24164.
[33] K. Mustapha, B. Abdallah, and K. M. Furati, A discontinuous Petrov-Galerkin method for time-fractional diffusion equations, SIAM J. Numer. Anal., 52 (2014), pp. 2512-2529. · Zbl 1323.65109
[34] K. Mustapha and W. McLean, Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations, SIAM J. Numer. Anal., 51 (2013), pp. 491-515. · Zbl 1267.26005
[35] R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry, Physica Status Solidi (b), 133 (1986), pp. 425-430.
[36] E.-M. Ouhabaz, Gaussian estimates and holomorphy of semigroups, Proc. Amer. Math. Soc., 123 (1995), pp. 1465-1474. · Zbl 0829.47032
[37] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198, Elsevier, New York, 1998. · Zbl 0924.34008
[38] E. Sousa, How to approximate the fractional derivative of order \(1<\alpha\leq2\), Int. J. Bifurcation Chaos, 22 (2012), 1250075. · Zbl 1258.26006
[39] H. B. Stewart, Generation of analytic semigroups by strongly elliptic operators, Trans. Amer. Math. Soc., 199 (1974), pp. 141-162. · Zbl 0264.35043
[40] M. Stynes, E. O’Riordan, and J. L. Gracia, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55 (2017), pp. 1057-1079. · Zbl 1362.65089
[41] Z. Sun and X. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56 (2006), pp. 193-209. · Zbl 1094.65083
[42] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, 2nd ed., Springer Ser. Comput. Math. 25, Springer-Verlag, Berlin, 2006. · Zbl 1105.65102
[43] R. Wu, H. Ding, and C. Li, Determination of coefficients of high-order schemes for Riemann-Liouville derivative, Sci. World J., 2014 (2014), 402373.
[44] Y. Yan, M. Khan, and N. J. Ford, An analysis of the modified \(L\/1\) scheme for time-fractional partial differential equations with nonsmooth data, SIAM J. Numer. Anal., 56 (2018), pp. 210-227. · Zbl 1381.65070
[45] S. B. Yuste and L. Acedo, An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations, SIAM J. Numer. Anal., 42 (2005), pp. 1862-1874. · Zbl 1119.65379
[46] M. Zayernouri, M. Ainsworth, and G. E. Karniadakis, A unified Petrov-Galerkin spectral method for fractional PDEs, Comput. Methods Appl. Mech. Engrg., 283 (2015), pp. 1545-1569. · Zbl 1425.65127
[47] F. Zeng, C. Li, F. Liu, and I. Turner, The use of finite difference/element approaches for solving the time-fractional subdiffusion equation, SIAM J. Sci. Comput., 35 (2013), pp. A2976-A3000. · Zbl 1292.65096
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.