×

\(p\)-wave resonances in the exponential cosine screened Coulomb potential. (English) Zbl 07887699

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
82D10 Statistical mechanics of plasmas
Full Text: DOI

References:

[1] Shukla, P. K.; Eliasson, B., Localized plasmons in quantum plasmas, Phys. Lett. A, 372, 2893, 2008 · Zbl 1220.82110 · doi:10.1016/j.physleta.2007.11.074
[2] Shukla, P. K.; Eliasson, B., Recent developments in quantum plasma physics, Plasma Phys. Control Fusion, 52, 2010 · doi:10.1088/0741-3335/52/12/124040
[3] Shukla, P. K.; Eliasson, B., Colloquium: Nonlinear collective interactions in quantum plasmas with degenerate electron fluids, Rev. Mod. Phys., 83, 885, 2011 · doi:10.1103/RevModPhys.83.885
[4] Shukla, P. K.; Eliasson, B., Novel Attractive force between ions in quantum plasmas, Phys. Rev. Lett., 108, 2012 · doi:10.1103/PhysRevLett.108.165007
[5] Ghoshal, A.; Ho, Y. K., Doubly excited resonance states of helium in exponential cosine-screened Coulomb potentials, Phys. Rev. A, 79, 2009 · doi:10.1103/PhysRevA.79.062514
[6] Roy, A. K., Studies on some exponential-screened coulomb potentials, Int. J. Quantum Chem., 113, 1503, 2013 · doi:10.1002/qua.24351
[7] Ancarani, L. U.; Rodriguez, K. V., Correlated expansions of n^1S and n^3S states for two-electron atoms in exponential cosine screened potentials, Phys. Rev. A, 89, 2014 · doi:10.1103/PhysRevA.89.012507
[8] Janev, R. K.; Zhang, S. B.; Wang, J. G., Review of quantum collision dynamics in Debye plasmas, Matter Radiat. Extremes, 1, 237, 2016 · doi:10.1016/j.mre.2016.10.002
[9] Chaudhuri, S. K.; Mukherjee, P. K.; Chaudhuri, R. K.; Chattopadhyay, S., Equation of motion approach for describing allowed transitions in Ne and Al^3+ under classical and quantum plasmas, Phys. Plasmas, 25, 2018 · doi:10.1063/1.5011791
[10] Wang, X. W.; Chen, S. W.; Guo, J. Y., Stark resonances of a hydrogen-like atom under exponential cosine screened Coulomb potential, J. Phys. B At. Mol. Opt. Phys., 52, 2019 · doi:10.1088/1361-6455/aaf4ab
[11] Wu, J. Y.; Qi, Y. Y.; Cheng, Y. J.; Wu, Y.; Wang, J. G.; Janev, R. K.; Zhang, S. B., Free-free Gaunt factors of hydrogen-like ions in dense quantum plasmas, Phys. Plasmas, 27, 2020 · doi:10.1063/1.5140830
[12] Wang, X.; Jiang, Z.; Kar, S.; Ho, Y. K., The^1,3P^o states of exponential cosine-screened heliumlike atoms, At. Data Nucl. Data Tables, 143, 2021 · doi:10.1016/j.adt.2021.101466
[13] Zhang, Y. Z.; Jiao, L. G.; Liu, F.; Liu, A.; Ho, Y. K., Energy levels of ground and singly excited states of two-electron atoms in dense quantum plasmas, At. Data Nucl. Data Tables, 140, 2021 · doi:10.1016/j.adt.2021.101420
[14] Klaus, M.; Simon, B., Coupling constant thresholds in nonrelativistic quantum mechanics, Ann. Phys. (N. Y.), 130, 251, 1980 · Zbl 0455.35112 · doi:10.1016/0003-4916(80)90338-3
[15] Lam, C. S.; Varshni, Y. P., Bound Eigenstates of the exponential cosine screened Coulomb potential, Phys. Rev. A, 6, 1391, 1972 · doi:10.1103/PhysRevA.6.1391
[16] Ray, P. P.; Ray, A., Continuum and discrete s states for the exponential cosine screened coulomb potential by the Ecker-Weizel approximation, Phys. Lett. A, 78, 443, 1980 · doi:10.1016/0375-9601(80)90419-3
[17] Lai, C. S., Energies of the exponential cosine screened Coulomb potential, Phys. Rev. A, 26, 2245, 1982 · doi:10.1103/PhysRevA.26.2245
[18] Ghoshal, A.; Ho, Y. K., Doubly excited resonance states of two-electron systems in exponential cosine-screened Coulomb potentials, Comput. Phys. Commun., 182, 122, 2011 · Zbl 1219.81102 · doi:10.1016/j.cpc.2010.05.010
[19] Ghoshal, A.; Ho, Y. K., Ground states and doubly excited resonance states of H^− embedded in dense quantum plasmas, J. Phys. B: At. Mol. Opt. Phys., 42, 2009 · doi:10.1088/0953-4075/42/17/175006
[20] Qi, Y. Y.; Wang, J. G.; Janev, R. K., Bound-bound transitions in hydrogen-like ions in dense quantum plasmas, Phys. Plasmas, 23, 2016 · doi:10.1063/1.4956467
[21] Qi, Y. Y.; Wang, J. G.; Janev, R. K., Photoionization of hydrogen-like ions in dense quantum plasmas, Phys. Plasmas, 24, 2017 · doi:10.1063/1.4985658
[22] Roy, A. K., Critical parameters and spherical confinement of H atom in screened Coulomb potential, Int. J. Quantum Chem., 116, 953, 2016 · doi:10.1002/qua.25108
[23] Iafrate, G. J., Critical Screening Parameters for the Generalized Screened Coulomb Potential, Phys. Rev. A, 8, 1138, 1973 · doi:10.1103/PhysRevA.8.1138
[24] Diaz, C. G.; Fernandez, F. M.; Castro, E. A., Critical screening parameters for screened Coulomb potentials, J. Phys. A: Math. Gen., 24, 2061, 1991 · Zbl 0731.65070 · doi:10.1088/0305-4470/24/9/016
[25] Nayek, S. K.; Mondal, S.; Saha, J. K., Structural properties of hydrogen-like ions (Z=1-18) under quantum and classical plasma environment, At. Data Nucl. Data Tables, 137, 2021 · doi:10.1016/j.adt.2020.101379
[26] Jiao, L. G.; He, Y. Y.; Zhang, Y. Z.; Ho, Y. K., Multipole polarizabilities and critical phenomena of hydrogen-like atoms in dense quantum plasmas, J. Phys. B: At. Mol. Opt. Phys., 54, 2021 · doi:10.1088/1361-6455/abdd49
[27] Sadhukhan, A.; Dutta, S.; Saha, J. K., Critical stability and quantum phase transition of screened two-electron system, Int. J. Quantum Chem., 119, 2019 · doi:10.1002/qua.26042
[28] Sadhukhan, A.; Nayek, S. K.; Saha, J. K., Critical stability and quantum phase transition of two-electron system under exponential-cosine-screened-Coulomb interaction, Eur. Phys. J. D, 74, 210, 2020 · doi:10.1140/epjd/e2020-10328-8
[29] Serra, P.; Kais, S., Ground-state stability and criticality of two-electron atoms with screened Coulomb potentials using the B-splines basis set, J. Phys. B: At. Mol. Opt. Phys., 45, 2012 · doi:10.1088/0953-4075/45/23/235003
[30] Montgomery, H. E Jr.; Sen, K. D.; Katriel, J., Critical screening in the one- and two-electron Yukawa atoms, Phys. Rev. A, 97, 2018 · doi:10.1103/PhysRevA.97.022503
[31] Sen, K. D.; Katriel, J.; Montgomery, H. E Jr., A comparative study of two-electron systems with screened Coulomb potentials, Ann. Phys. (N. Y.), 397, 192, 2018 · Zbl 1397.81087 · doi:10.1016/j.aop.2018.08.001
[32] Kar, S.; Ho, Y. K., Electron affinity of the hydrogen atom and a resonance state of the hydrogen negative ion embedded in Debye plasmas, New J. Phys., 7, 141, 2005 · doi:10.1088/1367-2630/7/1/141
[33] Kar, S.; Wang, Y. S.; Ho, Y. K., Critical stability for two-electron ions with Yukawa potentials and varying Z, Phys. Rev. A, 99, 2019 · doi:10.1103/PhysRevA.99.042514
[34] Jiang, P.; Jiang, Z.; Kar, S., Resonance States of Two-Electron Ions in Dense Quantum Plasmas, Few-Body Syst., 57, 1165, 2016 · doi:10.1007/s00601-016-1155-4
[35] Wang, X.; Jiang, Z.; Kar, S.; Ho, Y. K., Doubly excited^1P^o resonance states of helium in quantum plasmas, Phys. Plasmas, 28, 2021 · doi:10.1063/5.0030014
[36] Li, X. N.; Zhang, Y. Z.; Jiao, L. G.; Wang, Y. C.; Montgomery, H. E Jr.; Ho, Y. K.; Fritzsche, S., Geometric properties of the ground state of H^− and He in dense quantum plasmas, Eur. Phys. J., 77, 96, 2023 · doi:10.1140/epjd/s10053-023-00683-9
[37] Jiao, L. G.; Xie, H. H.; Liu, A.; Montgomery, H. E Jr.; Ho, Y. K., Critical screening parameters and critical behaviors of one-electron systems with screened Coulomb potentials, J. Phys. B At. Mol. Opt. Phys., 54, 2021 · doi:10.1088/1361-6455/ac259c
[38] Jiao, L. G.; Xu, L.; Zheng, R. Y.; Liu, A.; Zhang, Y. Z.; Montgomery, H. E Jr.; Ho, Y. K., Critical screening parameters of one-electron systems with screened Coulomb potentials: high Rydberg limit, J. Phys. B: At. Mol. Opt. Phys., 55, 2022 · doi:10.1088/1361-6455/ac8add
[39] Xu, L.; Jiao, L. G.; Liu, A.; Wang, Y. C.; Montgomery, H. E Jr.; Ho, Y. K.; Fritzsche, S., Critical screening parameters of one-electron systems with screened Coulomb potentials: circular Rydberg states, J. Phys. B: At. Mol. Opt. Phys., 56, 2023 · doi:10.1088/1361-6455/aced2d
[40] Ho, Y. K., The method of complex coordinate rotation and its applications to atomic collision processes, Phys. Rep., 99, 1, 1983 · doi:10.1016/0370-1573(83)90112-6
[41] Singh, D.; Varshni, Y. P., Accurate eigenvalues and oscillator strengths for the exponential-cosine screened Coulomb potential, Phys. Rev. A, 28, 2606, 1983 · doi:10.1103/PhysRevA.28.2606
[42] Nasser, I.; Abdelmonem, M. S.; Abdel-Hady, A., J-Matrix approach for the exponential-cosine-screened Coulomb potential, Phys. Scr., 84, 2011 · doi:10.1088/0031-8949/84/04/045001
[43] Bahlouli, H.; Abdelmonem, M. S.; Al-Marzoug, S. M., Analytical treatment of the oscillating Yukawa potential, Chem. Phys., 393, 153, 2012 · doi:10.1016/j.chemphys.2011.12.002
[44] Yao, G.; Chu, S. I., Generalized pseudospectral methods with mappings for bound and resonance state problems, Chem. Phys. Lett., 204, 381, 1993 · doi:10.1016/0009-2614(93)90025-V
[45] Zhu, L.; He, Y. Y.; Jiao, L. G.; Wang, Y. C.; Ho, Y. K., Revisiting the generalized pseudospectral method: Radial expectation values, fine structure, and hyperfine splitting of confined atom, Int. J. Quantum Chem., 120, 2020 · doi:10.1002/qua.26245
[46] Jiao, L. G.; Ji, X. H.; Hu, Z. X.; Liu, A.; Montgomery, H. E Jr.; Ho, Y. K., s-Wave resonance in exponential cosine screened Coulomb potential, Eur. Phys. J., 75, 313, 2021 · doi:10.1140/epjd/s10053-021-00330-1
[47] Bransden, B. H., Atomic Collision Theory, 1970, New York: W. A. Benjamin, New York
[48] Hu, Z. X.; Jiao, L. G.; Liu, A.; Wang, Y. C.; Montgomery, H. E Jr.; Ho, Y. K.; Fritzsche, S., Resonances in the Hulthen potential: benchmark calculations, critical behaviors, and interference effects, J. Phys. A: Math. Theor., 56, 2023 · Zbl 1534.81183 · doi:10.1088/1751-8121/acfe65
[49] He, Y. Y.; Zhou, Z. L.; Jiao, L. G.; Liu, A.; Montgomery, H. E Jr.; Ho, Y. K., Hyperpolarizabilities of hydrogenlike atoms in Debye and dense quantum plasmas, Phys. Rev. E, 107, 2023 · doi:10.1103/PhysRevE.107.045201
[50] Xia, W. H.; Zhou, Z. L.; Jiao, L. G.; Liu, A.; Montgomery, H. E Jr.; Ho, Y. K.; Fritzsche, S., Variational perturbation theory for dynamic polarizabilities and dispersion coefficients, Phys. Rev. E, 108, 2023 · doi:10.1103/PhysRevE.108.035305
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.