×

Resonances in the Hulthén potential: benchmark calculations, critical behaviors, and interference effects. (English) Zbl 1534.81183

Summary: We perform benchmark calculations of resonance states in the Hulthén potential by employing the uniform complex-scaling generalized pseudospectral method. Complex resonance energies for states with the lowest four orbital angular momenta are reported for a wide range of screening parameters where their positions lie above the threshold. Our results are in good agreement with previous \(J\)-matrix predictions, but differ significantly from the complex-scaling calculations based on oscillator basis set. By tracing the resonance poles via bound-resonance transition as the screening parameter increases, we successfully identify the electronic configurations of the numerically obtained resonances. The asymptotic laws for resonance position and width near the critical transition region are extracted, and their connections with the bound-state asymptotic law and Wigner threshold law, respectively, are disclosed. We further find that the birth of a new resonance will distort the trajectories of adjacent higher-lying resonances, while even if two resonances are exactly degenerate in real energy position, they can still be treated as near-isolated resonances provided their widths are significantly different in magnitude.
{© 2023 IOP Publishing Ltd}

MSC:

81V45 Atomic physics
35P15 Estimates of eigenvalues in context of PDEs
35B34 Resonance in context of PDEs
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
70M20 Orbital mechanics
82B27 Critical phenomena in equilibrium statistical mechanics
Full Text: DOI

References:

[1] Buckman, S. J.; Clark, C. W., Rev. Mod. Phys., 66, 539 (1994) · doi:10.1103/RevModPhys.66.539
[2] Moiseyev, N., Phys. Rep., 302, 212 (1998) · doi:10.1016/S0370-1573(98)00002-7
[3] Tanner, G.; Richter, K.; Rost, J-M, Rev. Mod. Phys., 72, 497 (2000) · doi:10.1103/RevModPhys.72.497
[4] Simons, J., J. Phys. Chem. A, 127, 3940 (2023) · doi:10.1021/acs.jpca.3c01564
[5] Taylor, J. R., Scattering Theory: The Quantum Theory of Nonrelativistic Collisions (2006), Dover Publications
[6] Fritzsche, S.; Nikkinen, J.; Huttula, S-M; Aksela, H.; Huttula, M.; Aksela, S., Phys. Rev. A, 75 (2007) · doi:10.1103/PhysRevA.75.012501
[7] Fritzsche, S.; Palmeri, P.; Schippers, S., Symmetry, 13, 520 (2021) · doi:10.3390/sym13030520
[8] Rothhardt, J.; Hädrich, S.; Demmler, S.; Krebs, M.; Fritzsche, S.; Limpert, J.; Tünnermann, A., Phys. Rev. Lett., 112 (2014) · doi:10.1103/PhysRevLett.112.233002
[9] Artemyev, A. N.; Cederbaum, L. S.; Demekhin, P. V., Phys. Rev. A, 96 (2017) · doi:10.1103/PhysRevA.96.033410
[10] Mouloudakis, G.; Lambropoulos, P., J. Phys. B: At. Mol. Opt. Phys., 51, 01LT01 (2018) · doi:10.1088/1361-6455/aa9a93
[11] Aufleger, L.; Friebel, P.; Rupprecht, P.; Magunia, A.; Ding, T.; Rebholz, M.; Hartmann, M.; Ott, C.; Pfeifer, T., New J. Phys., 24 (2022) · doi:10.1088/1367-2630/ac3b2e
[12] Hulthén, L., Ark. Mat. Astron. Fys., 28A, 5 (1942) · JFM 68.0646.04
[13] Hulthén, L., Ark. Mat. Astron. Fys., 29B, 1 (1942)
[14] Hall, R. L.; Saad, N.; Sen, K. D., J. Math. Phys., 59 (2018) · Zbl 1404.81094 · doi:10.1063/1.5043484
[15] Lam, C. S.; Varshni, Y. P., Phys. Rev. A, 4, 1875 (1971) · doi:10.1103/PhysRevA.4.1875
[16] Greene, R. L.; Aldrich, C., Phys. Rev. A, 14, 2363 (1976) · doi:10.1103/PhysRevA.14.2363
[17] Durand, D.; Durand, L., Phys. Rev. D, 23, 1092 (1981) · doi:10.1103/PhysRevD.23.1092
[18] Laha, U.; Bhoi, J., Phys. Rev. C, 91 (2015) · doi:10.1103/PhysRevC.91.034614
[19] Bhoi, J.; Laha, U., Phys. At. Nucl., 79, 62 (2016) · doi:10.1134/S1063778816030054
[20] Pyykkö, P.; Jokisaari, J., Chem. Phys., 10, 293 (1975) · doi:10.1016/0301-0104(75)87043-1
[21] Olson, J. A.; Micha, D. A., J. Chem. Phys., 68, 4352 (1978) · doi:10.1063/1.435512
[22] Yoon, J. H.; Yun, Y., J. Korean Phys. Soc., 37, 73 (2000)
[23] Bahar, M. K.; Soylu, A.; Poszwa, A., IEEE Trans. Plasma Sci., 44, 2297 (2016) · doi:10.1109/TPS.2016.2604421
[24] Mukherjee, N.; Patra, C. N.; Roy, A. K., Phys. Rev. A, 104 (2021) · doi:10.1103/PhysRevA.104.012803
[25] Mukherjee, N.; Roy, A. K., Phys. Rev. A, 104 (2021) · doi:10.1103/PhysRevA.104.042803
[26] Mahdavi, M.; Akbarian, H., Chin. J. Phys., 77, 1381 (2022) · doi:10.1016/j.cjph.2021.12.007
[27] Shourkaei, H. A.; Mahdavi, M., Chin. J. Phys., 77, 2668 (2022) · Zbl 07851810 · doi:10.1016/j.cjph.2022.03.029
[28] Chen, Z-B, Phys. Plasmas, 30 (2023) · doi:10.1063/5.0140534
[29] Bayrak, O.; Boztosun, I., Phys. Scr., 76, 92 (2007) · Zbl 1138.81376 · doi:10.1088/0031-8949/76/1/016
[30] Bayrak, O.; Kocak, G.; Boztosun, I., J. Phys. A: Math. Gen., 39 (2006) · Zbl 1100.81022 · doi:10.1088/0305-4470/39/37/012
[31] Zhang, M-C; Huang-Fu, G-Q, Chin. Phys. Lett., 28 (2011) · doi:10.1088/0256-307X/28/5/050304
[32] Stanek, J., Open Chem., 9, 737 (2011) · doi:10.2478/s11532-011-0050-6
[33] Stubbins, C., Phys. Rev. A, 48, 220 (1993) · doi:10.1103/PhysRevA.48.220
[34] Kumar, K.; Prasad, V., Results Phys., 21 (2021) · doi:10.1016/j.rinp.2020.103796
[35] He, Y. Y.; Jiao, L. G.; Liu, A.; Zhang, Y. Z.; Ho, Y. K., Eur. Phys. J. D, 75, 126 (2021) · doi:10.1140/epjd/s10053-021-00141-4
[36] Abdelmonem, M. S.; Nasser, I.; Bahlouli, H.; Al Khawaja, U.; Alhaidari, A. D., Phys. Lett. A, 373, 2408 (2009) · Zbl 1231.81083 · doi:10.1016/j.physleta.2009.05.012
[37] Alhaidari, A. D.; Heller, E. J.; Yamani, H. A.; Abdelmonem, M. S., The J-Matrix Method: Developments and Applications (2008), Springer · Zbl 1140.81004
[38] Alhaidari, A. D., Phys. Scr., 81 (2010) · Zbl 1190.81062 · doi:10.1088/0031-8949/81/02/025013
[39] Feng, J-S; Liu, Z.; Guo, J-Y, Chin. Phys. Lett., 27 (2010) · doi:10.1088/0256-307X/27/11/110304
[40] Ho, Y. K., Phys. Rep., 99, 1 (1983) · doi:10.1016/0370-1573(83)90112-6
[41] Yao, G.; Chu, S. I., Chem. Phys. Lett., 204, 381 (1993) · doi:10.1016/0009-2614(93)90025-V
[42] Chu, S. I.; Telnov, D. A., Phys. Rep., 390, 1 (2004) · doi:10.1016/j.physrep.2003.10.001
[43] Zhu, L.; He, Y. Y.; Jiao, L. G.; Wang, Y. C.; Ho, Y. K., Int. J. Quantum Chem., 120 (2020) · doi:10.1002/qua.26245
[44] Jiao, L. G.; Ji, X. H.; Hu, Z. X.; Liu, A.; Montgomery Jr, H. E.; Ho, Y. K., Eur. Phys. J. D, 75, 313 (2021) · doi:10.1140/epjd/s10053-021-00330-1
[45] Patil, S. H., J. Phys. A: Math. Gen., 17, 575 (1984) · doi:10.1088/0305-4470/17/3/019
[46] Varshni, Y. P., Phys. Rev. A, 41, 4682 (1990) · doi:10.1103/PhysRevA.41.4682
[47] Jiao, L. G.; Xie, H. H.; Liu, A.; Montgomery H, E. Jr; Ho, Y. K., J. Phys. B: At. Mol. Opt. Phys., 54 (2021) · doi:10.1088/1361-6455/ac259c
[48] Klaus, M.; Simon, B., Ann., Phys., NY, 130, 251 (1980) · Zbl 0455.35112 · doi:10.1016/0003-4916(80)90338-3
[49] Estienne, C. S.; Busuttil, M.; Moini, A.; Drake, G. W F., Phys. Rev. Lett., 112 (2014) · doi:10.1103/PhysRevLett.112.173001
[50] Jiao, L. G.; Zheng, R. Y.; Liu, A.; Montgomery Jr, H. E.; Ho, Y. K., Phys. Rev. A, 105 (2022) · doi:10.1103/PhysRevA.105.052806
[51] Wigner, E. P., Phys. Rev., 73, 1002 (1948) · Zbl 0041.33304 · doi:10.1103/PhysRev.73.1002
[52] Sadeghpour, H. R.; Bohn, J. L.; Cavagnero, M. J.; Esry, B. D.; Fabrikant, I. I.; Macek, J. H.; Rau, A. R P., J. Phys. B: At. Mol. Opt. Phys., 33, R93 (2000) · doi:10.1088/0953-4075/33/5/201
[53] Schulz, G. J., Rev. Mod. Phys., 45, 378 (1973) · doi:10.1103/RevModPhys.45.378
[54] Jiao, L. G.; Xu, L.; Zheng, R. Y.; Liu, A.; Zhang, Y. Z.; Montgomery Jr, H. E.; Ho, Y. K., J. Phys. B: At. Mol. Opt. Phys., 55 (2022) · doi:10.1088/1361-6455/ac8add
[55] Jiao, L. G.; Ho, Y. K., Few-Body Syst., 54, 1937 (2013) · doi:10.1007/s00601-013-0721-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.