×

An extensive critique of sliding mode control and adaptive neuro-fuzzy inference system for nonlinear system. (English) Zbl 07887155

Summary: Nonlinear control hypothesis is the region of control hypothesis which manages frameworks that are nonlinear, time-variant, or both. Nonlinear control structures have extended high prevalence fundamentally because of the wide use of hypothetical intends to deal with credible issues in different zones of engineering and medical aspects. Sliding mode control (SMC) is a nonlinear control strategy applied when the deterministic model of the nonlinear system is discrepant with actual plant in terms of plant parameters and undetermined external disturbances. SMC is a sort of nonlinear control that accentuates zero error convergence modeling error, demonstrating nonlinearities and outside aggravations. Adaptive neuro-fuzzy inference system (ANFIS) captures neural associations and soft reason guidelines in a single framework. ANFIS causes fewer errors and is more obvious to the customer isolated from the ANN. The paper centers that neural organizations accept a critical capacity in controlling nonlinear frameworks. This review aims an overview of existing methods for nonlinear control and application of SMC for nonlinear system based on ANFIS.
© 2021 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd

MSC:

93-XX Systems theory; control
Full Text: DOI

References:

[1] R.Zhang et al., Nonlinear fuzzy predictive control of hydroelectric system, IET Gener. Transm. Distrib.11 (2017), no. 8, 1966-1975. https://doi.org/10.1049/iet‐gtd.2016.1300 · doi:10.1049/iet‐gtd.2016.1300
[2] R.Jafari, W.Yu, and X.Li, Fuzzy differential equations for nonlinear systems modeling with Bernstein neural networks, IEEE Access4 (2016), 9428-9436. https://doi.org/10.1109/ACCESS.2017.2647920 · doi:10.1109/ACCESS.2017.2647920
[3] H.Sun et al., Solving partial differential equation based on Bernstein neural network and extreme learning machine algorithm, Neural Process. Lett.50 (2019), no. 2, 1153-1172. https://doi.org/10.1007/s11063‐018‐9911‐8 · doi:10.1007/s11063‐018‐9911‐8
[4] V.Prasad, K.Kothari, and U.Mehta, Parametric identification of nonlinear fractional Hammerstein models, Fractal Fract.4 (2019), no. 1, 2. https://doi.org/10.3390/fractalfract4010002 · doi:10.3390/fractalfract4010002
[5] S.Wang et al., Neural network sliding mode control of intelligent vehicle longitudinal dynamics, IEEE Access7 (2019), 162333-162342. https://doi.org/10.1109/ACCESS.2019.2949992 · doi:10.1109/ACCESS.2019.2949992
[6] H.Fukushima, K.Muro, and F.Matsuno, Sliding‐mode control for transformation to an inverted pendulum mode of a mobile robot with wheel‐arms, IEEE Trans. Ind. Electron.62 (2015), no. 7, 4257-4266. https://doi.org/10.1109/TIE.2014.2384475 · doi:10.1109/TIE.2014.2384475
[7] M.Spasić et al., Predictive sliding mode control based on Laguerre functions, Control Eng. Appl. Informatics21 (2019), no. 1, 12-20.
[8] A. K.Yadav and P.Gaur, Neuro‐fuzzy‐based improved IMC for speed control of nonlinear heavy duty vehicles, Def. Sci. J.66 (2016), no. 6, 665-672. https://doi.org/10.14429/dsj.66.9489 · doi:10.14429/dsj.66.9489
[9] M. A.Shoorehdeli et al., Identification using ANFIS with intelligent hybrid stable learning algorithm approaches and stability analysis of training methods, Appl. Soft Comput. J.9 (2009), no. 2, 833-850. https://doi.org/10.1016/j.asoc.2008.11.001 · doi:10.1016/j.asoc.2008.11.001
[10] M. B.Ahmadi, N. A.Kiani, and N.Mikaeilvand, Laplace transform formula on fuzzy nth‐order derivative and its application in fuzzy ordinary differential equations, Soft Comput.18 (2014), no. 12, 2461-2469. https://doi.org/10.1007/s00500‐014‐1224‐x · Zbl 1336.34007 · doi:10.1007/s00500‐014‐1224‐x
[11] S. T.Glad, Step responses of nonlinear non‐minimum phase systems, IFAC Proc. Vol.37 (2004), no. 13, 1165-1169. https://doi.org/10.1016/S1474‐6670(17)31384‐8 · doi:10.1016/S1474‐6670(17)31384‐8
[12] G.Kerschen and D.Adams, Preface, In Conference Proceedings of the Society for Experimental Mechanics Series, vol. 2, Springer, New York, 2014.
[13] S.Adaily, T.Garna, A.Mbarek, and H.Messaoud, Identification of nonlinear systems by the new representation ARX‐Laguerre decoupled multimodel, 2013 International Conference on Electrical Engineering and Software Applications, 2013, pp. 1-6. https://doi.org/10.1109/ICEESA.2013.6578361 · doi:10.1109/ICEESA.2013.6578361
[14] I.Benabdelwahed et al., Nonlinear system modelling based on NARX model expansion on Laguerre orthonormal bases, IET Signal Process.12 (2018), no. 2, 228-241. https://doi.org/10.1049/iet‐spr.2017.0187 · doi:10.1049/iet‐spr.2017.0187
[15] Y.Hirama, H.Hamane, and F.Hiroki, Closed loop modelling method for nonlinear system using Laguerre polynomials, ICCAS 2010 ‐ Int. Conf. Control. Autom. Syst., 2010, no. 9, 231-236. https://doi.org/10.1109/ICCAS.2010.5670327 · doi:10.1109/ICCAS.2010.5670327
[16] H. T.Tuan and H.Trinh, Stability of fractional‐order nonlinear systems by Lyapunov direct method, IET Control Theory Appl.12 (2018), no. 17, 2417-2422. https://doi.org/10.1049/iet‐cta.2018.5233 · doi:10.1049/iet‐cta.2018.5233
[17] O.Ciftcioglu, M. S.Bittermann, and I. S.Sariyildiz, A Neural Fuzzy System for Soft Computing, NAFIPS 2007 ‐ 2007 Annual Meeting of the North American Fuzzy Information Processing Society, 2007, pp. 489-495. https://doi.org/10.1109/NAFIPS.2007.383889 · doi:10.1109/NAFIPS.2007.383889
[18] J.‐R.JangANFIS: adaptive‐network‐based fuzzy inference system, IEEE Trans. Syst. Man Cybern. 23May‐June 1993, no. 3, 665-685. https://doi.org/10.1109/21.256541 · doi:10.1109/21.256541
[19] A. P. F.Evangelista and G. L.deOliveira Serra, Multivariable State‐Space Recursive Identification Algorithm Based on Evolving Type‐2 Neural‐Fuzzy Inference System, J. Control Autom. Electr. Syst.30 (2019), 921-942. https://doi.org/10.1007/s40313‐019‐00528‐0 · doi:10.1007/s40313‐019‐00528‐0
[20] Y.Gao et al., Interval type‐2 FNN‐based quantized tracking control for hypersonic flight vehicles with prescribed performance, IEEE Trans. Syst. Man Cyber: Syst. (2019), 1-13. https://doi.org/10.1109/TSMC.2019.2911726 · doi:10.1109/TSMC.2019.2911726
[21] Q.Li et al., Adaptive neuro‐fuzzy sliding mode control guidance law with impact angle constraint, IET Control Theory Appl.9 (2015), no. 14, 2115-2123. https://doi.org/10.1049/iet‐cta.2014.1206 · doi:10.1049/iet‐cta.2014.1206
[22] F. M.Zaihidee, S.Mekhilef, and M.Mubin, Application of fractional order sliding mode control for speed control of permanent magnet synchronous motor, IEEE Access7 (2019), 101765-101774. https://doi.org/10.1109/access.2019.2931324 · doi:10.1109/access.2019.2931324
[23] S.Kurode, S.Spurgeon, B.Bandyopadhyay, and P. S.Gandhi, Sliding mode control for slosh‐free motion using nonlinear sliding surface, 2009 Eur. Control Conf. ECC 2009, 18, (2014), no. 2, 2134-2139. https://doi.org/10.23919/ecc.2009.7074720 · doi:10.23919/ecc.2009.7074720
[24] M. X.Yan, Y. W.Jing, Y. G.He, and S.Ping, Adaptive sliding mode controller for a class of second‐order underactuated systems, 2009 Chinese Control and Decision Conference, 2009, pp. 2782-2786. https://doi.org/10.1109/CCDC.2009.5194961 · doi:10.1109/CCDC.2009.5194961
[25] R.Xu and Ü.Özgüner, Sliding mode control of a class of underactuated systems, Automatica44 (2008), no. 1, 233-241. https://doi.org/10.1016/j.automatica.2007.05.014 · Zbl 1138.93409 · doi:10.1016/j.automatica.2007.05.014
[26] S.Sivananaithaperumal and S.Baskar, Design of multivariable fractional order pid controller using covariance matrix adaptation evolution strategy, Arch. Control Sci.24 (2014), no. 2, 235-251. https://doi.org/10.2478/acsc‐2014‐0014 · Zbl 1327.93223 · doi:10.2478/acsc‐2014‐0014
[27] V.Utkin, Discussion aspects of high‐order sliding mode control, IEEE Trans. Automat. Contr.61 (2016), no. 3, 829-833. https://doi.org/10.1109/TAC.2015.2450571 · Zbl 1359.93100 · doi:10.1109/TAC.2015.2450571
[28] X.Hu et al., Adaptive sliding mode control of nonlinear non‐minimum phase system with input delay, IET Control Theory Appl.11 (2017), no. 8, 1153-1161. https://doi.org/10.1049/iet‐cta.2016.1167 · doi:10.1049/iet‐cta.2016.1167
[29] G. P.Incremona, M.Rubagotti, and A.Ferrara, Sliding mode control of constrained nonlinear systems, IEEE Trans. Automat. Contr.62 (2017), no. 6, 2965-2972. https://doi.org/10.1109/TAC.2016.2605043 · Zbl 1369.93248 · doi:10.1109/TAC.2016.2605043
[30] J.Wang et al., Adaptive type‐2 FNN‐based dynamic sliding mode control of DC-DC boost converters, IEEE Trans. Syst. Man Cyber: Syst.51 (2019), 2246-2257. https://doi.org/10.1109/TSMC.2019.2911721 · doi:10.1109/TSMC.2019.2911721
[31] L.Yin et al., Sliding mode control on receding horizon: practical control design and application, Control Eng. Pract.109 (2021), 104724.
[32] Y.Chu, S.Hou, and J.Fei, Continuous terminal sliding mode control using novel fuzzy neural network for active power filter, Control Eng. Pract.109 (2021), 104735.
[33] Y.‐A.Liu et al., Extended dissipative sliding mode control for nonlinear networked control systems via event‐triggered mechanism with random uncertain measurement, Appl. Math Comput.396 (2021), 125901. · Zbl 1508.93306
[34] S.Xiaojie et al., Event‐triggered sliding mode control of networked control systems with Markovian jump parameters, Automatica125 (2021), 109405. · Zbl 1461.93318
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.