×

A generalized reaching-law-based discrete-time integral sliding-mode controller with matched/mismatched disturbance attenuation. (English) Zbl 07892395

Summary: A generalized reaching-law-based (RL-based) discrete-time integral sliding-mode controller, which is versatile for either matched or mismatched disturbances, is designed in this paper to obtain high output tracking accuracy and avoid tremendous control efforts. Specifically, a disturbance decomposition-based discrete-time integral sliding surface is designed, and a generalized discrete-time reaching law is established. Different from the existing integral sliding surfaces, the proposed sliding surface synthesizes a disturbance-related integral term that is defined based on disturbance decomposition; this is crucial to the disturbance attenuation. Moreover, different from the available discrete-time reaching laws, the proposed reaching law introduces an adaptive exponential term into the control gains, and hence, the conventional RL-based discrete-time integral sliding-mode control (DISMC) and the equivalent-control-based (EC-based) DISMC can be integrated. Rigorous analysis shows that the closed-loop system is stable, the control effort can be satisfactory, and the steady-state output tracking accuracy is of order \( O(T^2) \) for both matched and mismatched disturbances. The proposed method is proven effective through numerical simulations.
© 2023 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd.

MSC:

93-XX Systems theory; control
Full Text: DOI

References:

[1] O.Abbaker AM, H.Wang, and Y.Tian, Adaptive integral type‐terminal sliding mode control for PEMFC air supply system using time delay estimation algorithm, Asian J. Control24 (2022), no. 1, 217-226. · Zbl 07886962
[2] S.‐H.Chen and L.‐C.Fu, Output feedback sliding mode control for a stewart platform with a nonlinear observer‐based forward kinematics solution, IEEE Trans. Control Syst. Technol.21 (2011), no. 1, 176-185.
[3] J.George, G.Mani, and A.Alexander Stonier, An extensive critique of sliding mode control and adaptive neuro‐fuzzy inference system for nonlinear system, Asian J. Control24 (2022), no. 5, 2548-2564. · Zbl 07887155
[4] X.Lin, Y.Wang, and Y.Liu, Neural‐network‐based robust terminal sliding‐mode control of quadrotor, Asian J. Control24 (2022), no. 1, 427-438. · Zbl 07886980
[5] A. J.Muñoz‐Vázquez, J. D.Sánchez‐Torres, and M.Defoort, Second‐order predefined‐time sliding‐mode control of fractional‐order systems, Asian J. Control24 (2022), no. 1, 74-82. · Zbl 07886950
[6] D.Sen, T. K.Saha, and J.Dey, Sliding mode control of double input buck buck-boost fused converter, Asian J. Control24 (2022), no. 2, 845-858. · Zbl 07887017
[7] F.‐K.Yeh, H.‐H.Chien, and L.‐C.Fu, Design of optimal midcourse guidance sliding‐mode control for missiles with TV, IEEE Trans. Aerosp. Electron. Syst.39 (2003), no. 3, 824-837.
[8] S.Ding and S.Li, Second‐order sliding mode controller design subject to mismatched term, Automatica77 (2017), 388-392. · Zbl 1355.93043
[9] W.Gao, Y.Wang, and A.Homaifa, Discrete‐time variable structure control systems, IEEE Trans. Industr. Electron.42 (1995), no. 2, 117-122.
[10] J.Kim, S.‐H.Oh, D.‐D.Cho, and J. K.Hedrick, Robust discrete‐time variable structure control methods, J. Dyn. Sys., Meas., Control122 (2000), no. 4, 766-775.
[11] S.Chakrabarty and B.Bandyopadhyay, Minimum ultimate band design of discrete sliding mode control, Asian J. Control17 (2015), no. 5, 1889-1897. · Zbl 1333.93068
[12] H.Ma, J.Wu, and Z.Xiong, Discrete‐time sliding‐mode control with improved quasi‐sliding‐mode domain, IEEE Trans. Industr. Electron.63 (2016), no. 10, 6292-6304.
[13] S.Maity, Dynamics and stability issues of a discretized sliding‐mode controlled dc‐dc buck converter governed by fixed‐event‐time switching, IEEE Trans. Circ. Syst. I: Reg. Papers60 (2013), no. 6, 1657-1669. · Zbl 1468.94729
[14] T.Nguyen, W.‐C.Su, Z.Gajic, and C.Edwards, Higher accuracy output feedback sliding mode control of sampled‐data systems, IEEE Trans. Autom. Control61 (2015), no. 10, 3177-3182. · Zbl 1359.93095
[15] A.Sarvi, S.Mobayen, A.Fekih, S.Mohammadi, and J. H.Asad, Design of a global discrete‐time sliding mode control scheme for a class of nonlinear systems with state delays and uncertainties, Asian J. Control24 (2022), no. 5, 2761-2770. · Zbl 07887172
[16] X.Yu, B.Wang, and X.Li, Computer‐controlled variable structure systems: The state‐of‐the‐art, IEEE Trans. Industr. Inform.8 (2012), no. 2, 197-205.
[17] C.Zaafouri, B.Torchani, A.Sellami, and G.Garcia, Uncertain saturated discrete‐time sliding mode control for a wind turbine using a two‐mass model, Asian J. Control20 (2018), no. 2, 802-818. · Zbl 1390.93205
[18] H.Du, X.Yu, M. Z. Q.Chen, and S.Li, Chattering‐free discrete‐time sliding mode control, Automatica68 (2016), 87-91. · Zbl 1334.93041
[19] W.‐C.Su, S. V.Drakunov, and U.Ozguner, An O(T2) boundary layer in sliding mode for sampled‐data systems, IEEE Trans. Autom. Control45 (2000), no. 3, 482-485. · Zbl 0972.93039
[20] K.Abidi, J.‐X.Xu, and Y.Xinghuo, On the discrete‐time integral sliding‐mode control, IEEE Trans. Autom. Control52 (2007), no. 4, 709-715. · Zbl 1366.93091
[21] Y.Eun, J.‐H.Kim, K.Kim, and D.‐I.Cho, Discrete‐time variable structure controller with a decoupled disturbance compensator and its application to a CNC servomechanism, IEEE Trans. Control Syst. Technol.7 (1999), no. 4, 414-423.
[22] J.‐S.Han, T.‐I.Kim, T.‐H.Oh, S.‐H.Lee, and D.Cho, Effective disturbance compensation method under control saturation in discrete‐time sliding mode control, IEEE Trans. Industr. Electron.67 (2020), no. 7, 5696-5707.
[23] S.Qu, X.Xia, and J.Zhang, Dynamics of discrete‐time sliding‐mode‐control uncertain systems with a disturbance compensator, IEEE Trans. Industr. Electron.61 (2014), no. 7, 3502-3510.
[24] S.Li, J.Yang, W.‐H.Chen, and X.Chen, Generalized extended state observer based control for systems with mismatched uncertainties, IEEE Trans. Industr. Electron.59 (2012), no. 12, 4792-4802.
[25] J.Yang, J.Su, S.Li, and X.Yu, High‐order mismatched disturbance compensation for motion control systems via a continuous dynamic sliding‐mode approach, IEEE Trans. Industr. Inform.10 (2014), no. 1, 604-614.
[26] H.Liu and S.Li, Speed control for PMSM servo system using predictive functional control and extended state observer, IEEE Trans. Industr. Electron.59 (2012), no. 2, 1171-1183.
[27] Z.Wang, S.Li, and Q.Li, Discrete‐time fast terminal sliding mode control design for DC-DC buck converters with mismatched disturbances, IEEE Trans. Industr. Inform.16 (2020), no. 2, 1204-1213.
[28] J.Zhang, P.Shi, Y.Xia, and H.Yang, Discrete‐time sliding mode control with disturbance rejection, IEEE Trans. Industr. Electron.66 (2018), no. 10, 7967-7975.
[29] H.Du, G.Wen, Y.Cheng, W.Lu, and T.Huang, Designing discrete‐time sliding mode controller with mismatched disturbances compensation, IEEE Trans. Industrial Inform.16 (2020), no. 6, 4109-4118.
[30] C.Edwards, N. O.Lai, and S. K.Spurgeon, On discrete dynamic output feedback min-max controllers, Automatica41 (2005), no. 10, 1783-1790. · Zbl 1087.93038
[31] Z.Galias and X.Yu, Euler’s discretization of single input sliding‐mode control systems, IEEE Trans. Autom. Control52 (2007), no. 9, 1726-1730. · Zbl 1366.93379
[32] S.Qu, X.Xia, and J.Zhang, Dynamical behaviors of an Euler discretized sliding mode control systems, IEEE Trans. Autom. Control59 (2014), no. 9, 2525-2529. · Zbl 1360.93161
[33] S.Chakrabarty and B.Bandyopadhyay, A generalized reaching law with different convergence rates, Automatica63 (2016), 34-37. · Zbl 1329.93042
[34] H.Ma, Y.Li, and Z.Xiong, Discrete‐time sliding‐mode control with enhanced power reaching law, IEEE Trans. Industr. Electron.66 (2019), no. 6, 4629-4638.
[35] H.Ma, J.Wu, and Z.Xiong, A novel exponential reaching law of discrete‐time sliding‐mode control, IEEE Trans. Industr. Electron.64 (2017), no. 5, 3840-3850.
[36] V.Utkin and S. V.Drakunov, On discrete‐time sliding mode control, IFAC Conference on Nonlinear Control, 1989, pp. 484-489.
[37] A.Bartoszewicz and P.Leśniewski, New switching and nonswitching type reaching laws for SMC of discrete time systems, IEEE Trans. Control Syst. Technol.24 (2016), no. 2, 670-677.
[38] C.Edwards and Y.Shtessel, Enhanced continuous higher order sliding mode control with adaptation, J. Franklin Inst.356 (2019), no. 9, 4773-4784. · Zbl 1414.93051
[39] A.Bartoszewicz and P.Latosiński, Discrete time sliding mode control with reduced switching-a new reaching law approach, Int. J. Robust Nonlin. Control26 (2016), no. 1, 47-68. · Zbl 1333.93067
[40] T.Nguyen, C.Edwards, V.Azimi, and W.‐C.Su, Improving control effort in output feedback sliding mode control of sampled‐data systems, IET Control Theory Appl.13 (2019), no. 13, 2128-2137. · Zbl 07907008
[41] E. A.Misawa, Discrete‐time sliding mode control: The linear case, J. Dyn. Sys., Meas., Control119 (1997), no. 4, 819-821. · Zbl 0995.93500
[42] Q.Xu and Y.Li, Micro‐/nanopositioning using model predictive output integral discrete sliding mode control, IEEE Trans. Industr. Electron.59 (2012), no. 2, 1161-1170.
[43] K.Abidi, J.‐X.Xu, and J.‐H.She, A discrete‐time terminal sliding‐mode control approach applied to a motion control problem, IEEE Trans. Industr. Electron.56 (2009), no. 9, 3619-3627.
[44] J.Lan, Asymptotic estimation of state and faults for linear systems with unknown perturbations, Automatica118 (2020), 108955. · Zbl 1447.93039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.