×

Lyapunov-like functions for almost global convergence in discrete-time systems. (English) Zbl 07885784

Summary: This paper presents new results on discrete-time almost global convergence to an invariant set. First, we present new sufficient conditions for almost global convergence using density functions. In contrast to existing density-function results, the new results in this paper do not rely on a local convergence assumption, and they do not require knowledge of the inverse map of the difference equation. Next, we present new sufficient conditions for almost global convergence using Lyapunov-like functions rather than density functions. These Lyapunov-like results can be useful because constructing and analyzing density functions is often difficult in comparison to Lyapunov-like analysis. This paper also presents a variety of simple examples to illustrate these new methods for almost global convergence analysis.

MSC:

93C55 Discrete-time control/observation systems
93D30 Lyapunov and storage functions
Full Text: DOI

References:

[1] Milnor, J., On the concept of attractor, (The Theory of Chaotic Attractors, 1985, Springer), 243-264
[2] Rantzer, A., A dual to Lyapunov’s stability theorem, Syst. Control Lett., 42, 3, 161-168, 2001 · Zbl 0974.93058
[3] Angeli, D., An almost global notion of input-to-state stability, IEEE Trans. Automat. Control, 49, 6, 866-874, 2004 · Zbl 1365.93461
[4] Monzón, P., Almost global attraction in planar systems, Systems Control Lett., 54, 8, 753-758, 2005 · Zbl 1129.34306
[5] Van Handel, R., Almost global stochastic stability, SIAM J. Control Optim., 45, 4, 1297-1313, 2006 · Zbl 1124.34033
[6] Masubuchi, I., Analysis of positive invariance and almost regional attraction via density functions with converse results, IEEE Trans. Automat. Control, 52, 7, 1329-1333, 2007 · Zbl 1366.93259
[7] Rajaram, R.; Vaidya, U.; Fardad, M.; Ganapathysubramanian, B., Stability in the almost everywhere sense: A linear transfer operator approach, J. Math. Anal. Appl., 368, 1, 144-156, 2010 · Zbl 1201.34085
[8] Masubuchi, I.; Ohta, Y., A Lyapunov-density criterion for almost everywhere stability of a class of Lipschitz continuous and almost everywhere \(C{}^1\) nonlinear systems, Internat. J. Control, 87, 2, 422-431, 2014 · Zbl 1317.93203
[9] I. Masubuchi, Y. Ohta, Analysis of almost-everywhere stability of a class of discontinuous systems via Lyapunov densities, in: Proc. IEEE Euro. Contr. Conf., 2016, pp. 567-574.
[10] Grushkovskaya, V.; Zuyev, A., Attractors of nonlinear dynamical systems with a weakly monotone measure, J. Math. Anal. Appl., 422, 1, 559-570, 2015 · Zbl 1346.37025
[11] Masubuchi, I.; Kikuchi, T., Lyapunov density criteria for time-varying and periodically time-varying nonlinear systems with converse results, SIAM J. Control Optim., 59, 1, 223-241, 2021 · Zbl 1469.93048
[12] Karabacak, Ö.; Kıvılcım, A.; Wisniewski, R., Almost global stability of nonlinear switched systems with time-dependent switching, IEEE Trans. Automat. Control, 65, 7, 2969-2978, 2019 · Zbl 1533.93566
[13] Dellnitz, M.; Hohmann, A., A subdivision algorithm for the computation of unstable manifolds and global attractors, Numer. Math., 75, 3, 293-317, 1997 · Zbl 0883.65060
[14] Mezić, I.; Wiggins, S., A method for visualization of invariant sets of dynamical systems based on the ergodic partition, Chaos, 9, 1, 213-218, 1999 · Zbl 0987.37080
[15] Sandholm, W. H., Almost global convergence to p-dominant equilibrium, Int. J. Game Theory, 30, 1, 107-116, 2001 · Zbl 1060.91024
[16] Froyland, G.; Padberg, K., Almost-invariant sets and invariant manifolds—connecting probabilistic and geometric descriptions of coherent structures in flows, Physica D, 238, 16, 1507-1523, 2009 · Zbl 1178.37119
[17] Billings, L.; Schwartz, I. B., Identifying almost invariant sets in stochastic dynamical systems, Chaos, 18, 2, Article 023122 pp., 2008 · Zbl 1307.37028
[18] Gorban, A. N.; Tyukin, I.; Steur, E.; Nijmeijer, H., Lyapunov-like conditions of forward invariance and boundedness for a class of unstable systems, SIAM J. Control Optim., 51, 3, 2306-2334, 2013 · Zbl 1283.34050
[19] Kharazishvili, A., On some applications of almost invariant sets, Bull. TICMI, 23, 2, 115-124, 2019 · Zbl 1470.22010
[20] Liu, S.; Liberzon, D.; Zharnitsky, V., Almost Lyapunov functions for nonlinear systems, Automatica, 113, Article 108758 pp., 2020 · Zbl 1440.93225
[21] D. Angeli, Some remarks on density functions for dual Lyapunov methods, in: Proc. IEEE Int. Conf. Dec. Contr., Vol. 5, 2003, pp. 5080-5082.
[22] Prajna, S.; Rantzer, A., On homogeneous density functions, (Directions in Mathematical Systems Theory and Optimization, 2003, Springer), 261-274 · Zbl 1043.93057
[23] Wang, L.; Sontag, E., Almost global convergence in singular perturbations of strongly monotone systems, (Positive Systems: Proceedings of the Second Multidisciplinary International Symposium on Positive Systems: Theory and Applications, 2006), 415-422 · Zbl 1276.34030
[24] Potrie, R.; Monzón, P., Local implications of almost global stability, Dyn. Syst., 24, 1, 109-115, 2009 · Zbl 1185.37024
[25] Prajna, S.; Parrilo, P. A.; Rantzer, A., Nonlinear control synthesis by convex optimization, IEEE Trans. Automat. Control, 49, 2, 310-314, 2004 · Zbl 1365.93164
[26] Natarajan, V.; Weiss, G., Almost global asymptotic stability of a grid-connected synchronous generator, Math. Control Signals Systems, 30, 2, 1-43, 2018 · Zbl 1396.93104
[27] Park, M.-C.; Sun, Z.; Anderson, B. D.; Ahn, H.-S., Distance-based control of \(\mathcal{K}_n\) formations in general space with almost global convergence, IEEE Trans. Automat. Control, 63, 8, 2678-2685, 2017 · Zbl 1423.93150
[28] Y. Cao, Z. Sun, B.D. Anderson, T. Sugie, Almost global convergence for distance-and area-constrained hierarchical formations without reflection, in: IEEE Int. Conf. Contr. Automation, 2019, pp. 1534-1539.
[29] Markdahl, J.; Thunberg, J.; Gonçalves, J., Almost global consensus on the \(n\)-sphere, IEEE Trans. Automat. Control, 63, 6, 1664-1675, 2017 · Zbl 1395.93446
[30] Kwon, S.-H.; Ahn, H.-S., Generalized weak rigidity: theory, and local and global convergence of formations, Syst. Control Lett., 146, Article 104800 pp., 2020 · Zbl 1454.93239
[31] Ko, G.; Hoang Trinh, M.; Ahn, H.-S., Bearing-only control of directed cycle formations: Almost global convergence and hardware implementation, Internat. J. Robust Nonlinear Control, 30, 12, 4789-4804, 2020 · Zbl 1466.93108
[32] He, W.; Qian, F.; Han, Q.-L.; Chen, G., Almost sure stability of nonlinear systems under random and impulsive sequential attacks, IEEE Trans. Autom. Control, 65, 9, 3879-3886, 2020 · Zbl 1533.93564
[33] Mertikopoulos, P.; Hallak, N.; Kavis, A.; Cevher, V., On the almost sure convergence of stochastic gradient descent in non-convex problems, Adv. Neural Inf. Process. Syst., 33, 1117-1128, 2020
[34] Sebbouh, O.; Gower, R. M.; Defazio, A., Almost sure convergence rates for stochastic gradient descent and stochastic heavy ball, (Conference on Learning Theory, 2021, PMLR), 3935-3971
[35] Vaidya, U.; Mehta, P. G., Lyapunov measure for almost everywhere stability, IEEE Trans. Automat. Control, 53, 1, 307-323, 2008 · Zbl 1367.93447
[36] Ö. Karabacak, R. Wisniewski, J. Leth, On the almost global stability of invariant sets, in: Euro. Contr. Conf., ECC, 2018, pp. 1648-1653.
[37] Mané, R., Ergodic Theory and Differentiable Dynamics, 2012, Springer Science & Business Media
[38] Vaidya, U.; Mehta, P. G.; Shanbhag, U. V., Nonlinear stabilization via control Lyapunov measure, IEEE Trans. Automat. Control, 55, 6, 1314-1328, 2010 · Zbl 1368.93571
[39] Vaidya, U., Stochastic stability analysis of discrete-time system using Lyapunov measure, (Proc. IEEE Amer. Contr. Conf., 2015, IEEE), 4646-4651
[40] Kamaldar, M.; Hoagg, J. B., Adaptive harmonic steady-state control for rejection of sinusoidal disturbances acting on a completely unknown system, Int. J. Adapt. Control Signal Process., 31, 9, 1308-1326, 2017 · Zbl 1375.93067
[41] Hoagg, J. B.; Bernstein, D. S., Retrospective cost model reference adaptive control for nonminimum-phase systems, J. Guid. Contr. Dyn., 35, 6, 1767-1786, 2012
[42] Olfati-Saber, R., Flocking for multi-agent dynamic systems: Algorithms and theory, IEEE Trans. Automat. Control, 51, 3, 401-420, 2006 · Zbl 1366.93391
[43] B.J. Wellman, J.B. Hoagg, A sampled-data flocking algorithm for agents with double-integrator dynamics, in: Proc. Amer. Contr. Conf., 2017, pp. 1334-1339.
[44] M. Kamaldar, J.B. Hoagg, Results on Lyapunov-Like Functions for Almost Global Convergence in Discrete-Time Systems, in: Proc. Amer. Contr. Conf., 2022, pp. 152-157.
[45] Rudin, W., Real and Complex Analysis, 1987, McGraw-Hill · Zbl 0925.00005
[46] Bogachev, V. I., Measure Theory, 2007, Springer Science & Business Media · Zbl 1120.28001
[47] Khalil, H. K., Nonlinear Systems, 2002, Patience Hall · Zbl 1003.34002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.