×

Adaptive harmonic steady-state control for rejection of sinusoidal disturbances acting on a completely unknown system. (English) Zbl 1375.93067

Summary: This paper presents an Adaptive Harmonic Steady-State (AHSS) controller that addresses the problem of rejecting sinusoids with known frequencies that act on a completely unknown asymptotically stable linear time-invariant system. We analyze the stability and closed-loop performance of AHSS for multi-input multi-output systems that are square (ie, the number of controls equals the number of performance measurements). In this case, we show that AHSS asymptotically rejects disturbances, that is, the performance measurement tends to 0. We also present a numerical study of the steady-state and transient performance of AHSS for square and nonsquare systems.

MSC:

93C40 Adaptive control/observation systems
93B35 Sensitivity (robustness)
93C15 Control/observation systems governed by ordinary differential equations
93C05 Linear systems in control theory
Full Text: DOI

References:

[1] ElliottSJ, NelsonPA. Active noise control. IEEE Sig Proc Mag.1993;10(4):12-35.
[2] FriedmannPP, MillottTA. Vibration reduction in rotorcraft using active control: a comparision of various approaches. J Guid Contr Dyn.1995;18(4):664-673.
[3] KnospeCR, HopeRW, TamerSM, FediganSJ. Robustness of adaptive unbalance control of rotors with magnetic bearings. J Vib Contr.1996;2(2):33-52.
[4] LauJ, JoshiSS, AgrawalBN, KimJW. Investigation of periodic‐disturbance identification and rejection in spacecraft. J Guid Contr Dyn.2006;29(4):792-798.
[5] JohnsonCD. Accommodation of external disturbances in linear regulator and servomechanism problems. IEEE Trans Autom Contr. 1971;16: 635-644.
[6] DavisonEJ. The robust control of a servomechanism problem for linear time‐invariant multivariable systems. IEEE Trans Autom Contr. 1976;21:25-34. · Zbl 0326.93007
[7] FrancisBA, SebakhyA, WonhamWM. Synthesis of multivariable regulators: the internal model principle. J Appl Math Optim. 1974;1: 64-86. · Zbl 0296.93010
[8] HoaggJB, SantilloMA, BernsteinDS. Internal model control in the shift and delta domains. IEEE Trans Autom Contr. 2008;53: 1066-1072. · Zbl 1367.93231
[9] ChenWH, YangJ, GuoL, LiS. Disturbance‐observer‐based control and related methods‐An overview. IEEE Trans Indust Electr. 2016;63(2):1083-1095.
[10] GuoL, ChenWH. Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. Int J Robust Nonlin Contr. 2005;15(3):109-125. · Zbl 1078.93030
[11] YangJ, LiS, YuX. Sliding‐mode control for systems with mismatched uncertainties via a disturbance observer. IEEE Trans Indust Electr. 2013;60(1):160-169.
[12] YaoX, GuoL. Composite anti‐disturbance control for markovian jump nonlinear systems via disturbance observer. Autom. 2013;49(8):2538-2545. · Zbl 1364.93102
[13] LiS, SunH, YangJ, YuX. Continuous finite‐time output regulation for disturbed systems under mismatching condition. IEEE Trans Autom Contr. 2015;60(1):277-282. · Zbl 1360.93255
[14] BodsonM, SacksA, KhoslaP. Harmonic generation in adaptive feedforward cancellation schemes. IEEE Trans Autom Contr. 1994;39(9):1939-1944. · Zbl 0816.93048
[15] MessnerW, BodsonM. Design of adaptive feedforward algorithms using internal model equivalence. Int J Adapt Contr Sig Proc. 1995;9:199-212. · Zbl 0825.93464
[16] BayardDS. General theory of linear time‐invariant adpative feedforward systems with harmonic regressors. IEEE Trans Autom Contr. 2000;45(11):1983-1996. · Zbl 0991.93128
[17] MarinoR, TomeiP. Output regulation for unknown stable linear systems. IEEE Trans Autom Contr.2015;60(8):2213-2218. · Zbl 1360.93282
[18] MarinoR, TomeiP. Hybrid adaptive multi‐sinusoidal disturbance cancellation. IEEE Trans Autom Contr.2016. https://doi.org/10.1109/TAC.2016.2615978. · Zbl 1373.93227
[19] JafariS, IoannouPA. Robust adaptive attenuation of unknown periodic disturbances in uncertain multi‐input multi‐output systems. Autom.2016;70:32-42. · Zbl 1339.93043
[20] JafariS, IoannouPA. Rejection of unknown periodic disturbances for continuous‐time MIMO systems with dynamic uncertainties. Int J Adapt Contr Sig Proc.2016;30(12):1674-1688. · Zbl 1353.93041
[21] BodsonM. Rejection of periodic disturbances of unknown and time‐varying frequencies. Int J Adapt Contr Sig Proc. 2005;19: 67-88. · Zbl 1076.93517
[22] HoaggJB, SantilloMA, BernsteinDS. Discrete‐time adaptive command following and disturbance rejection with unknown exogenous dynamics. IEEE Trans Autom Contr. 2008;53: 912-928. · Zbl 1367.93308
[23] HoaggJB, BernsteinDS. Retrospective cost model reference adaptive control for nonminimum‐phase systems. J Guid Contr Dyn. 2012;35(6):1767-1786.
[24] BasturkHI, KrsticM. State derivative feedback for adaptive cancellation of unmatched disturbances in unknown strict‐feedback LTI systems. Autom. 2014;50(10):2539-2545. · Zbl 1301.93090
[25] BasturkHI, KrsticM. Adaptive sinusoidal disturbance cancellation for unknown LTI systems despite input delay. Autom. 2015;58: 131-138. · Zbl 1330.93131
[26] HoaggJB, SeiglerTM. Decentralized filtered dynamic inversion for uncertain minimum‐phase systems. Autom. 2015;61: 192-200. · Zbl 1327.93011
[27] HoaggJB, SeiglerTM. Filtered feedback linearization for nonlinear systems with unknown disturbances. Sys Contr Lett. 2013;62(8):613-625. · Zbl 1279.93034
[28] HoaggJB, SeiglerTM. Filtered‐dynamic‐inversion control for unknown minimum‐phase systems with unknown‐and‐unmeasured disturbances. Int J Contr. 2013;86(3):449-468. · Zbl 1278.93268
[29] WidrowB, SternsSD. Adaptive Signal Processing. Prentice Hall: New Jersey, 1985. · Zbl 0593.93063
[30] BjarnasonE. Analysis of the filtered‐X algorithm. IEEE Trans Speech Audio Process. 1995;3(6):504-514.
[31] KuoSM, VijayanD. A secondary path modeling technique for active noise control systems. IEEE Trans Speech Audio Process. 1997;5(4):374-377.
[32] ZhangM, LanH, SerW. Cross‐updated active noise control system with online secondary path modeling. IEEE Trans Speech Audio Process. 2001;9(5):598-602.
[33] ElliottSJ, BoucherCC, NelsonPA. The behavior of a multiple channel active control system. IEEE Trans Sig Proc. 1992;40(5):1041-1052. · Zbl 0760.93077
[34] PearsonJT, GoodallRM, LyndonI. Active control of helicopter vibration. Comput Contr Eng J. 1994;5:277-284.
[35] PattD, ChandrasekarJ, BernsteinDS, FriedmannPP. Higher‐harmonic‐control algorithm for helicopter vibration reduction revisted. J Guid Contr Dyn. 2005;28(5):918-930.
[36] ChandrasekarJ, LiuL, PattD, FriedmannPP, BernsteinDS. Adaptive harmonic steady‐state control for disturbance rejection. IEEE Trans Contr Sys Tech. 2006;14(6):993-1007.
[37] PiggS, BodsonM. Adaptive algorithms for the rejection of sinusoidal disturbances acting on unknown plants. IEEE Trans Contr Sys Tech. 2010;18(4):822-836.
[38] BernsteinDS.Matrix Mathematics. Princeton University Press: Princeton, 2009. · Zbl 1175.01004
[39] BrandwoodDH. A complex gradient operator and its application in adaptive array theory. IEE Proc F (Communications, Radar and Signal Processing). 1983;130(1):11-16.
[40] HongJ, AckersJC, VenugopalR. Identification, and feedback control of noise in an acoustic duct. IEEE Trans Contr Sys Tech. 1996;4: 283-291.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.