×

Mass lumping of stable generalized finite element methods for parabolic interface problems. (English) Zbl 07883088

MSC:

65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] D. A.Edwards, H.Brenner, and D. T.Wasan, Interfacial transport process and rheology, Butterworths/Heinemann, London, 1991.
[2] C. S.Peskin, Numerical analysis of blood flow in heart, J. Comput. Phys.25 (1977), 220-252. · Zbl 0403.76100
[3] Z.Li and K.Ito, The immersed interface method: numerical solutions of PDEs involving interfaces and irregular domains, SIAM, 2006. · Zbl 1122.65096
[4] J. W.Barrett and C. M.Elliott, Fitted and unfitted finite‐element methods for elliptic equations with smooth interfaces, IMA J. Numer. Anal.7 (1987), 283-300. · Zbl 0629.65118
[5] Z.Chen and J.Zou, Finite element methods and their convergence for elliptic and parabolic interface problems, J. Numer. Math.79 (1998), 175-202. · Zbl 0909.65085
[6] J.Huang and J.Zou, Uniform a priori estimates for elliptic and static Maxwell interface problems, Discr. Contin. Dyn. Syst. Ser. B.7 (2007), 145-170. · Zbl 1130.35020
[7] A.Patel, S. K.Acharya, and A. K.Pani, Stabilized Lagrange multiplier method for elliptic and parabolic interface problems, Appl. Num. Math.120 (2017), 287-304. · Zbl 1370.65055
[8] P.Huang, H.Wu, and Y.Xiao, An unfitted interface penalty finite element method for elliptic interface problems, Comput. Methods Appl. Mech. Engrg.323 (2017), 439-460. · Zbl 1439.74422
[9] I.Harari and J.Dolbow, Analysis of an efficient finite element method for embedded interface problems, Comput. Math.46 (2010), 205-211. · Zbl 1190.65172
[10] T.Lin, Y.Lin, and X.Zhang, Partially penalized immersed finite element methods for elliptic interface problems, SIAM J. Numer. Anal.53 (2015), 1121-1144. · Zbl 1316.65104
[11] Z.Li, T.Lin, and X.Wu, New cartesian grid methods for interface problems using the finite element formulation, Numer. Math.96 (2003), 61-98. · Zbl 1055.65130
[12] R.Guo, Solving parabolic moving interface problems with dynamical immersed spaces on unfitted meshes: fully discrete analysis, SIAM J. Numer. Anal.59 (2021), 797-828. · Zbl 1466.65134
[13] R.Guo, T.Lin, and Y.Lin, Approximation capabilities of the immersed finite element spaces for elasticity interface problems, Numer. Meth. Partial Differ. Equ.35 (2019), 1243-1268. · Zbl 1418.65174
[14] A.Hansbo and P.Hansbo, An unfitted finite element method, Based on Nitsche’s method, for elliptic interface problems, Comput. Meth. Appl. Mech. Engrg.191 (2002), 5537-5552. · Zbl 1035.65125
[15] P.Hansbo, M. G.Larson, and S.Zahedi, A cut finite element method for a Stokes interface problem, Appl. Num.Math.85 (2014), 90-114. · Zbl 1299.76136
[16] J.Chessa and T.Belytschko, An extended finite element method for two‐phase fluids, J. Appl. Mech.70 (2003), 10-17. · Zbl 1110.74391
[17] H.Sauerland and T. P.Fries, The extended finite element method for two‐phase and free‐surface flows: a systematic study, J. Comput. Phys.230 (2011), 3369-3390. · Zbl 1316.76050
[18] C.Lehrenfeld and A.Reusken, Analysis of a Nitsche XFEM‐DG discretization for a class of two‐phase mass transport problems, SIAM J. Numer. Anal.51 (2013), 958-983. · Zbl 1268.76033
[19] S.Gross, T.Ludescher, M.Olshanskii, and A.Reusken, Robust preconditioning for XFEM applied to time‐dependent Stokes problems, SIAM J. Sci. Comput.38 (2016), A3492-A3514. · Zbl 1398.76106
[20] M.Kirchhart, S.Gross, and A.Reusken, Analysis of an XFEM discretization for Stokes interface problems, SIAM J. Sci. Comput.38 (2016), A1019-A1043. · Zbl 1381.76182
[21] Q.Zhang and I.Babŭska, A stable generalized finite element method (SGFEM) of degree two for interface problems, Comput. Meth. Appl. Mech. Engrg.363 (2889), no. 11, 2020. · Zbl 1436.65192
[22] Q.Zhang, C.Cui, U.Banerjee, and I.Babŭska, A condensed generalized finite element method (CGFEM) for interface problems, Comput. Meth. Appl. Mech. Engrg.391 (2022), 114537. · Zbl 1507.65256
[23] I.Babuška, U.Banerjee, and K.Kergrene, Strongly stable generalized finite element method: application to interface problems, Comput. Meth. Appl. Mech. Engrg.327 (2017), 58-92. · Zbl 1439.74385
[24] Q.Zhang, U.Banerjee, and I.Babuška, Strongly stable generalized finite element method (SSGFEM) for a non‐smooth interface problem, Comput. Meth. Appl. Mech. Engrg.344 (2019), 538-568. · Zbl 1440.74454
[25] I.Babuška and J. M.Melenk, The partition of unity finite element method, Int. J. Numer. Meth. Engng.40 (1997), 727-758. · Zbl 0949.65117
[26] I.Babuška, U.Banerjee, and J.Osborn, Survey of meshless and generalized finite element methods: a unified approach, Acta Numer.12 (2003), 1-125. · Zbl 1048.65105
[27] T.Belytschko, R.Gracie, and G.Ventura, A review of extended/generalized finite element methods for material modeling, Modelling Simul. Mater. Sci. Eng.17 (2009), 43-74.
[28] T. P.Fries and T.Belytschko, The extended/generalized finite element method: an overview of the method and its applications, Int. J. Numer. Meth. Engng.84 (2010), 253-304. · Zbl 1202.74169
[29] Y.Efendiev and T. Y.Hou, Multiscale finite element methods: theory and applications, Springer, 2009. · Zbl 1163.65080
[30] I.Babuška and U.Banerjee, Stable generalized finite element method (SGFEM), Comput. Meth. Appl. Mech. Engrg.201 (2011), 91-111. · Zbl 1239.74093
[31] Q.Zhang, I.Babuška, and U.Banerjee, Robustness in stable generalized finite element methods (SGFEM) applied to Poisson problems with crack singularities, Comput. Meth. Appl. Mech. Engrg.311 (2016), 476-502. · Zbl 1439.74479
[32] V.Gupta, C. A.Duarte, IBabuška, and U.Banerjee, A stable and optimally convergent generalized FEM (SGFEM) for linear elastic fracture mechanics, Comput. Meth. Appl. Mech. Engrg.266 (2013), 23-39. · Zbl 1286.74102
[33] A. G.Sanchez‐Rivadeneira, N.Shauer, B.Mazurowski, and C. A.Duarte, A stable generalized/eXtended p‐hierarchical FEM for three‐dimensional linear elastic fracture mechanics, Comput. Meth. Appl. Mech. Engrg.363 (2020), 112970. · Zbl 1442.74237
[34] C.Cui and Q.Zhang, Stable generalized finite element methods (SGFEM) for elasticity crack problems, Int. J. Numer. Meth. Engng.121 (2020), 3066-3082. · Zbl 07863271
[35] C.Cui, Q.Zhang, U.Banerjee, and I.Babŭska, Stable generalized finite element method (SGFEM) for three‐dimensional crack problems, Numer. Math.152 (2022), no. 2, 475-509. · Zbl 1497.65225
[36] Q.Zhang, DOF‐gathering stable generalized finite element methods (SGFEM) for crack problems, Numer. Meth. Partial Differ. Equ.36 (2020), 1209-1233. · Zbl 07777645
[37] H.Li, C.Cui, and Q.Zhang, Stable generalized finite element methods (SGFEM) for interfacial crack problems in bi‐materials, Eng. Anal. Bound. Elem.138 (2022), 83-94. · Zbl 1521.74226
[38] H.Sauerland and T. P.Fries, The stable XFEM for two‐phase flows, Comput. Fluids87 (2013), 41-49. · Zbl 1290.76073
[39] P.Zhu and Q.Zhang, BDF Schemes in stable generalized finite element methods for parabolic interface problems with moving interfaces, CMES‐Comp. Model. Eng.124 (2020), 107-127.
[40] Q.Zhang, U.Banerjee, and I.Babuska, High order stable generalized finite element methods, Numer. Math.128 (2014), 1-29. · Zbl 1304.65254
[41] P.Zhu, Q.Zhang, and T.Liu, Stable generalized finite element method (SGFEM) for parabolic interface problems, J. Comput. Appl. Math.367 (2020), 112475. · Zbl 1464.65135
[42] V.Thomee, Galerkin finite element methods for parabolic problems, Springer‐Verlag, New York, 1997. · Zbl 0884.65097
[43] J.Zeng and H.Yu, Error estimates of the lumped mass finite element method for semilinear elliptic problems, J. Comput. Appl. Math.236 (2012), no. 7, 1993-2004. · Zbl 1275.65076
[44] W. S.Key and Z. E.Beisinger, The transient dynamic analysis of thin shells by the finite element method, Proceedings of 3rd Conference on Matrix Methods in Structural Mechanics Wright‐Patterson Air Force Base, OH, 1971, pp. 19-21.
[45] P.Chatzipantelidis, R.Lazarov, and T.Vidar, Some error estimates for the lumped mass finite element method for a parabolic problem, Math. Comput.81 (2011), no. 277, 1-20. · Zbl 1251.65129
[46] J.Gupta and R.Sinha, A posteriori error estimates for lumped mass finite element method for linear parabolic problems using elliptic reconstruction, Numer. Func. Anal. Opt.38 (2017), no. 12, 1527-1547. · Zbl 1387.65105
[47] T.Menouillard, J.Réthoré, A.Combescure, and H.Bung, Efficient explicit time stepping for the eXtended finite element method (X‐FEM), Int. J. Numer. Meth. Engng.68 (2006), no. 9, 911-939. · Zbl 1128.74045
[48] T.Menouillard, J.Réthoré, N.Möes, A.Combescure, and H.Bung, Mass lumping strategies for XFEM explicit dynamics: application to crack propagation, Int. J. Numer. Meth. Engng.74 (2008), no. 3, 447-474. · Zbl 1159.74432
[49] T.Elguedj, A.Gravouil, and H.Maigre, An explicit dynamics extended finite element method. Part 1: mass lumping for arbitrary enrichment functions, Comput. Meth. Appl. Mech. Engrg.198 (2009), 2297-2317. · Zbl 1229.74128
[50] M. A.Schweitzer, Variational mass lumping in the partition of unity method, SIAM J. Sci. Comput.35 (2013), no. 2, A1073-A1097. · Zbl 1266.65162
[51] I.Asareh, J‐HSong, R. L.Mullen, and Y.Qian, A general mass lumping scheme for the variants of the extended finite element method, Int. J. Numer. Meth. Engng.121 (2020), 2262-2284. · Zbl 07843292
[52] S.Adjerid, I.Babuška, R.Guo, and T.Lin, An enriched immersed finite element method for interface problems with nonhomogeneous jump conditions, Comput. Meth. Appl. Mech. Engrg.404 (2023), 115770. · Zbl 1536.65133
[53] L.Zhu, Z.Zhang, and Z.Li, An immersed finite volume element method for 2D PDEs with discontinuous coefficients and non‐homogeneuos jump conditions, Comput. Math. Appl.70 (2015), 89-103. · Zbl 1443.65293
[54] Z.Li, W.Wang, I. L.Chern, and M.Lai, New formulations for interface problems in polar coordinates, SIAM J. Sci. Comput.25 (2003), 224-245. · Zbl 1040.65087
[55] Y.Jiang, M.Nian, and Q.Zhang, A stable generalized finite element method coupled with deep neural network for interface problems with discontinuities, Axioms11 (2022), 384.
[56] K. W.Cheng and T. P.Fries, Higher‐order XFEM for curved strong and weak discontinuities, Int. J. Numer. Meth. Engng.82 (2010), 564-590. · Zbl 1188.74052
[57] A. M.Aragon, C. A.Duarte, and P. H.Geubelle, Generalized finite element enrichment functions for discontinuous gradient fields, Int. J. Numer. Meth. Engng.82 (2010), 242-268. · Zbl 1188.74051
[58] N.Moës, M.Cloirec, P.Cartraud, and J. F.Remacle, A computational approach to handle complex microstructure geometries, Comput. Meth. Appl. Mech. Engrg.192 (2003), 3163-3177. · Zbl 1054.74056
[59] K.Kergrene, I.Babŭska, and U.Banerjee, Stable generalized finite element method and associated iterative schemes: application to interface problems, Comput. Meth. Appl. Mech. Engrg.305 (2016), 1-36. · Zbl 1425.74472
[60] T. P.Fries and XFEMA corrected, Approximation without problems in blending elements, Int. J. Numer. Meth. Engng.75 (2008), 503-532. · Zbl 1195.74173
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.