×

A condensed generalized finite element method (CGFEM) for interface problems. (English) Zbl 1507.65256

Summary: Extensive developments on various generalizations of the Finite Element Method (FEM) for the interface problems, with unfitted mesh, have been made in the last few decades. Typical generalizations and techniques include the immersed FEM, the penalized FEM, the generalized or the extended FEM (GFEM/XFEM). The GFEM/XFEM achieves good approximation by augmenting the finite element approximation space with enrichment functions, which require additional degrees of freedom (DOF). However these additional DOFs, in general, deteriorate the conditioning of the GFEM/XFEM. In this study, we propose a condensed GFEM (CGFEM) for the interface problem based on the partition of unity method and a local least square scheme. Compared to the conventional GFEM/XFEM, the CGFEM possesses the same number of DOFs as in the FEM, yields good approximation, and is well-conditioned. In comparison with the immersed FEM, the construction of shape functions of CGFEM is independent of the equation types and the material coefficients of the interface problem. As a result, the CGFEM could be applied to more general interface problems, e.g., problems with anisotropic materials and elasticity systems, in a unified approach. Moreover, the shape functions of CGFEM are continuous, and thus do not need any penalty terms and parameters. The optimal order of convergence of the CGFEM has been analyzed and established theoretically in this paper. Numerical experiments for isotropic and anisotropic interface problems and comparisons with the conventional GFEM/XFEM have also been presented to illuminate the theory and effectiveness of CGFEM.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs

Software:

IIMPACK

References:

[1] Edwards, D. A.; Brenner, H.; Wasan, D. T., Interfacial Transport Process and Rheology (1991), Butterworths/Heinemann: Butterworths/Heinemann London
[2] Li, Z.; Ito, K., The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains (2006), SIAM · Zbl 1122.65096
[3] Peskin, C. S., Numerical analysis of blood flow in heart, J. Comput. Phys., 25, 220-252 (1977) · Zbl 0403.76100
[4] Fries, T. P.; Belytschko, T., The extended/generalized finite element method: An overview of the method and its applications, Internat. J. Numer. Methods Engrg., 84, 253-304 (2010) · Zbl 1202.74169
[5] Babuška, I., The finite element method for elliptic equations with discontinuous coefficients, Computing, 5, 207-213 (1970) · Zbl 0199.50603
[6] Barrett, J. W.; Elliott, C. M., Fitted and unfitted finite-element methods for elliptic equations with smooth interfaces, IMA J. Numer. Anal., 7, 283-300 (1987) · Zbl 0629.65118
[7] Chen, Z.; Zou, J., Finite element methods and their convergence for elliptic and parabolic interface problems, J. Numer. Math., 79, 175-202 (1998) · Zbl 0909.65085
[8] Li, Z.; Ji, H.; Chen, X., Accurate solution and gradient computation for elliptic interface problems with variable coefficients, SIAM J. Numer. Anal., 55, 570-597 (2017) · Zbl 1362.76037
[9] Ewing, R.; Li, Z.; Lin, T.; Lin, Y., The immersed finite volume element methods for the elliptic interface problems, Math. Comput. Simulation, 50, 63-76 (1999) · Zbl 1027.65155
[10] Zhu, L.; Zhang, Z.; Li, Z., An immersed finite volume element method for 2D PDEs with discontinuous coefficients and non-homogeneuos jump conditions, Comput. Math. Appl., 70, 89-103 (2015) · Zbl 1443.65293
[11] Li, Z.; Lin, T.; Lin, Y.; Rogers, R. C., An immersed finite element space and its approximation capability, Numer. Methods Partial Differential Equations, 20, 338-367 (2004) · Zbl 1057.65085
[12] Li, Z.; Lin, T.; Wu, X., New cartesian grid methods for interface problems using the finite element formulation, Numer. Math., 96, 61-98 (2003) · Zbl 1055.65130
[13] Lin, T.; Lin, Y.; Zhang, X., Partially penalized immersed finite element methods for elliptic interface problems, SIAM J. Numer. Anal., 53, 1121-1144 (2015) · Zbl 1316.65104
[14] Patel, A.; Acharya, S. K.; Pani, A. K., Stabilized Lagrange multiplier method for elliptic and parabolic interface problems, Appl. Numer. Math., 120, 287-304 (2017) · Zbl 1370.65055
[15] Duprez, M.; Lozinski, A., \( \phi \)-FEM: A Finite element method on domains defined by level-sets, SIAM J. Numer. Anal., 58, 1008-1028 (2020) · Zbl 1435.65199
[16] Hansbo, A.; Hansbo, P., An unfitted finite element method, based on nitsche’s method, for elliptic interface problems, Comput. Methods Appl. Mech. Engrg., 191, 5537-5552 (2002) · Zbl 1035.65125
[17] Hansbo, P.; Larson, M. G.; Zahedi, S., A cut finite element method for a Stokes interface problem, Appl. Numer. Math., 85, 90-114 (2014) · Zbl 1299.76136
[18] Farina, S.; Claus, S.; Hale1, J. S.; Skupin, A.; Bordas, S. P.A., A cut finite element method for spatially resolved energy metabolism models in complex neuro-cell morphologies with minimal remeshing, Adv. Model. Simul. Eng. Sci., 8, 5 (2021)
[19] Huang, P.; Wu, H.; Xiao, Y., An unfitted interface penalty finite element method for elliptic interface problems, Comput. Methods Appl. Mech. Engrg., 323, 439-460 (2017) · Zbl 1439.74422
[20] Harari, I.; Dolbow, J., Analysis of an efficient finite element method for embedded interface problems, Comput. Math., 46, 205-211 (2010) · Zbl 1190.65172
[21] Lehrenfeld, C.; Reusken, A., Analysis of a Nitsche XFEM-DG discretization for a class of two-phase mass transport problems, SIAM J. Numer. Anal., 51, 958-983 (2013) · Zbl 1268.76033
[22] Cai, Z.; Ye, X.; Zhang, S., Discontinuous Galerkin finite element methods for interface problems: A priori and a posteriori error estimations, SIAM J. Numer. Anal., 49, 1761-1787 (2011) · Zbl 1232.65142
[23] Massjung, R., An unfitted discontinuous Galerkin method applied to elliptic interface problems, SIAM J. Numer. Anal., 50, 3134-3162 (2012) · Zbl 1262.65178
[24] Babuška, I.; Banerjee, U.; Kergrene, K., Strongly stable generalized finite element method: application to interface problems, Comput. Methods Appl. Mech. Engrg., 327, 58-92 (2017) · Zbl 1439.74385
[25] Zhang, Q.; Banerjee, U.; Babuška, I., Strongly stable generalized finite element method (SSGFEM) for a non-smooth interface problem, Comput. Methods Appl. Mech. Engrg., 344, 538-568 (2019) · Zbl 1440.74454
[26] Kergrene, K.; Babuška, I.; Banerjee, U., Stable Generalized Finite Element Method and associated iterative schemes: application to interface problems, Comput. Methods Appl. Mech. Engrg., 305, 1-36 (2016) · Zbl 1425.74472
[27] Chessa, J.; Belytschko, T., An extended finite element method for two-phase fluids, J. Appl. Mech., 70, 10-17 (2003) · Zbl 1110.74391
[28] Legrain, G.; Moës, N.; Huerta, A., Stability of incompressible formulations enriched with X-FEM, Comput. Methods Appl. Mech. Engrg., 197, 1835-1849 (2008) · Zbl 1194.74426
[29] Moës, N.; Cloirec, M.; Cartraud, P.; Remacle, J. F., A computational approach to handle complex microstructure geometries, Comput. Methods Appl. Mech. Engrg., 192, 3163-3177 (2003) · Zbl 1054.74056
[30] Cheng, K. W.; Fries, T. P., Higher-order XFEM for curved strong and weak discontinuities, Internat. J. Numer. Methods Engrg., 82, 564-590 (2010) · Zbl 1188.74052
[31] Sauerland, H.; Fries, T. P., The stable XFEM for two-phase flows, Comput. & Fluids, 87, 41-49 (2013) · Zbl 1290.76073
[32] Aragón, A. M.; Liang, B.; Ahmadian, H.; Soghrati, S., On the stability and interpolating properties of the Hierarchical Interface-enriched Finite Element Method, Comput. Methods Appl. Mech. Engrg., 362, Article 112671 pp. (2020) · Zbl 1439.65143
[33] van den Boom, S. J.; Zhang, J.; van Keulen, F.; Aragón, A. M., A stable interface-enriched formulation for immersed domains with strong enforcement of essential boundary conditions, Internat. J. Numer. Methods Engrg., 120, 1163-1183 (2019) · Zbl 07841259
[34] Guo, R.; Lin, T.; Lin, Y., Approximation capabilities of immersed finite element spaces for elasticity interface problems, Numer. Methods Partial Differential Equations, 35, 1243-1268 (2019) · Zbl 1418.65174
[35] Guo, R.; Lin, T.; Lin, Y., Error estimates for a partially penalized immersed finite element method for elasticity interface problems, ESAIM Math. Model. Numer. Anal., 54, 1-24 (2020) · Zbl 1442.74228
[36] Babuška, I.; Melenk, J. M., The partition of unity method, Internat. J. Numer. Methods Engrg., 40, 727-758 (1997) · Zbl 0949.65117
[37] Melenk, J. M.; Babuška, I., The partition of unity finite element method: Basis theory and applications, Comput. Methods Appl. Mech. Engrg., 139, 289-314 (1996) · Zbl 0881.65099
[38] Babuška, I.; Banerjee, U., Stable generalized finite element method(SGFEM), Comput. Methods Appl. Mech. Engrg., 201-204, 91-111 (2011) · Zbl 1239.74093
[39] Babuška, I.; Banerjee, U.; Osborn, J., Survey of meshless and generalized finite element methods: a unified approach, Acta Numer., 12, 1-125 (2003) · Zbl 1048.65105
[40] Duarte, C. A.; Oden, J. T., An h-p adaptive method using clouds, Comput. Methods Appl. Mech. Engrg., 139, 237-262 (1996) · Zbl 0918.73328
[41] Belytschko, T.; Gracie, R.; Ventura, G., A review of extended/generalized finite element methods for material modeling, Modelling Simul. Mater. Sci. Eng., 17, Article 043001 pp. (2009)
[42] Efendiev, Y.; Hou, T. Y., Multiscale Finite Element Methods: Theory and Applications (2009), Springer · Zbl 1163.65080
[43] Gross, S.; Ludescher, T.; Olshanskii, M.; Reusken, A., Robust preconditioning for XFEM applied to time-dependent Stokes problems, SIAM J. Sci. Comput., 38, A3492-A3514 (2016) · Zbl 1398.76106
[44] Kirchhart, M.; Gross, S.; Reusken, A., Analysis of an XFEM discretization for Stokes interface problems, SIAM J. Sci. Comput., 38, A1019-A1043 (2016) · Zbl 1381.76182
[45] Agathos, K.; Chatzi, E.; Bordas, S. P.A., A unified enrichment approach addressing blending and conditioning issues in enriched finite elements, Comput. Methods Appl. Mech. Engrg., 349, 673-700 (2019) · Zbl 1441.65088
[46] Loehnert, S., A stabilization technique for the regularization of nearly singular extended finite elements, Comput. Mech., 54, 523-533 (2014) · Zbl 1398.74362
[47] Menk, A.; Bordas, S. P.A., A robust preconditioning technique for the extended finite element method, Internat. J. Numer. Methods Engrg., 85, 13, 1609-1632 (2011) · Zbl 1217.74128
[48] Lang, C.; Makhija, D.; Doostan, A.; Maute, K., A simple and efficient preconditioning scheme for heaviside enriched XFEM, Comput. Mech., 54, 1357-1374 (2014) · Zbl 1311.74124
[49] Schweitzer, M. A., Stable enrichment and local preconditioning in the particle-partition of unity method, Numer. Math., 118, 137-170 (2011) · Zbl 1217.65210
[50] Sillem, A.; Simone, A.; Sluys, L. J., The Orthonormalized Generalized Finite Element Method-OGFEM: Efficient and stable reduction of approximation errors through multiple orthonormalized enriched basis functions, Comput. Methods Appl. Mech. Engrg., 287, 112-149 (2015) · Zbl 1425.65178
[51] Li, H., A note on the conditioning of a class of generalized finite element methods, Appl. Numer. Math., 62, 754-766 (2012) · Zbl 1237.65125
[52] Zhang, Q.; Babuška, I., A stable generalized finite element method (SGFEM) of degree two for interface problems, Comput. Methods Appl. Mech. Engrg., 363, Article 112889 pp. (2020) · Zbl 1436.65192
[53] Béchet, E.; Minnebo, H.; Moës, N.; Burgardt, B., Improved implementation and robustness study of the X-FEM for stress analysis around cracks, Internat. J. Numer. Methods Engrg., 64, 1033-1056 (2005) · Zbl 1122.74499
[54] Agathos, K.; Bordas, S. P.A.; Chatzi, E., Improving the conditioning of XFEM/GFEM for fracture mechanics problems through enrichment quasi-orthogonalization, Comput. Methods Appl. Mech. Engrg., 346, 1051-1073 (2019) · Zbl 1440.74351
[55] Agathos, K.; Chatzi, E.; Bordas, S. P.A., Stable 3D extended finite elements with higher order enrichment for accurate non planar fracture, Comput. Methods Appl. Mech. Engrg., 306, 19-46 (2016) · Zbl 1436.74064
[56] Agathos, K.; Ventura, G.; Chatzi, E.; Bordas, S. P.A., Stable 3D XFEM \(/\) vector level sets for non-planar 3D crack propagation and comparison of enrichment schemes, Internat. J. Numer. Methods Engrg., 113, 252-276 (2018) · Zbl 07867265
[57] Zhang, Q.; Babuška, I.; Banerjee, U., Robustness in stable generalized finite element methods (SGFEM) applied to Poisson problems with crack singularities, Comput. Methods Appl. Mech. Engrg., 311, 476-502 (2016) · Zbl 1439.74479
[58] Gupta, V.; Duarte, C. A.; Babuška, I.; Banerjee, U., A stable and optimally convergent generalized FEM (SGFEM) for linear elastic fracture mechanics, Comput. Methods Appl. Mech. Engrg., 266, 23-39 (2013) · Zbl 1286.74102
[59] Sanchez-Rivadeneira, A. G.; Duarte, C. A., A stable generalized/eXtended FEM with discontinuous interpolants for fracture mechanics, Comput. Methods Appl. Mech. Engrg., 345, 876-918 (2019) · Zbl 1440.74438
[60] Sanchez-Rivadeneira, A. G.; Shauer, N.; Mazurowski, B.; Duarte, C. A., A stable generalized/eXtended p-hierarchical FEM for three-dimensional linear elastic fracture mechanics, Comput. Methods Appl. Mech. Engrg., 364, Article 112970 pp. (2020) · Zbl 1442.74237
[61] Zhang, Q., DOF-gathering stable generalized finite element methods for crack problems, Numer. Methods Partial Differential Equations, 36, 1209-1233 (2020) · Zbl 07777645
[62] Cui, C.; Zhang, Q., Stable generalized finite element methods for elasticity crack problems, Internat. J. Numer. Methods Engrg., 121, 3066-3082 (2020) · Zbl 07863271
[63] Zhu, P.; Zhang, Q.; Liu, T., Stable generalized finite element method (SGFEM) for parabolic interface problems, J. Comput. Appl. Math., 367, Article 112475 pp. (2020) · Zbl 1464.65135
[64] Menouillard, T.; Réthoré, J.; Moës, N.; Combescure, A.; Bung, H., Mass lumping strategies for X-FEM explicit dynamics: Application to crack propagation, Internat. J. Numer. Methods Engrg., 74, 447-474 (2008) · Zbl 1159.74432
[65] Zhang, Q.; Cui, C., Condensed Generalized Finite Element Method (CGFEM), Numer. Methods Partial Differential Equations, 37, 1847-1868 (2021) · Zbl 07776048
[66] Griebel, M.; Schweitzer, M. A., A particle-partition of unity method. Part II: efficient cover construction and reliable integration, SIAM J. Sci. Comput., 23, 1655-1682 (2002) · Zbl 1011.65069
[67] Fries, T. P.; Belytschko, T., The intrinsic XFEM: a method for arbitrary discontinuities without additional unknowns, Internat. J. Numer. Methods Engrg., 68, 1358-1385 (2006) · Zbl 1129.74045
[68] Fries, T. P.; Belytschko, T., The intrinsic partition of unity method, Comput. Mech., 40, 803-814 (2007) · Zbl 1162.74049
[69] Fries, T. P., The intrinsic XFEM for two-fluid flows, Internat. J. Numer. Methods Fluids, 60, 437-471 (2009) · Zbl 1161.76026
[70] Mollapourasl, R.; Fereshtian, A.; Li, H.; Lu, X., RBF-PU method for pricing options under the jump diffusion model with local volatility, J. Comput. Appl. Math., 337, 98-118 (2018) · Zbl 1457.65148
[71] Wendland, H., Scattered Data Approximation (2005), Cambridge University Press: Cambridge University Press New York · Zbl 1075.65021
[72] Tian, R.; Wen, L., Improved XFEM - An extra-dof free, well-conditioning, and interpolating XFEM, Comput. Methods Appl. Mech. Engrg., 285, 639-658 (2015) · Zbl 1423.74926
[73] Babuška, I.; Banerjee, U.; Osborn, J.; Zhang, Q., Effect of numerical integration on meshless methods, Comput. Methods Appl. Mech. Engrg., 198, 2886-2897 (2009) · Zbl 1229.65204
[74] Díez, P.; Cottereau, R.; Zlotnik, S., A stable extended FEM formulation for multi-phase problems enforcing the accuracy of the fluxes through Lagrange multipliers, Internat. J. Numer. Methods Engrg., 96, 303-322 (2013) · Zbl 1352.65491
[75] Aragón, A. M.; Duarte, C. A.; Geubelle, P. H., Generalized finite element enrichment functions for discontinuous gradient fields, Internat. J. Numer. Methods Engrg., 82, 242-268 (2010) · Zbl 1188.74051
[76] Li, Z.; Wang, W. C.; Chern, I. L.; Lai, M. C., New formulations for interface problems in polar coordinates, SIAM J. Sci. Comput., 25, 224-245 (2003) · Zbl 1040.65087
[77] He, X.; Lin, T.; Lin, Y., Approximation capability of a bilinear immersed finite element space, Numer. Methods Partial Differential Equations, 24, 1265-1300 (2008) · Zbl 1154.65090
[78] Anitescu, C.; Banerjee, U., Approximation properties of the generalized finite element method, Adv. Comput. Math., 34, 369-390 (2011) · Zbl 1217.65207
[79] Brenner, S. C.; Scott, L. R., The Mathematical Theory of Finite Element Methods (2008), Springer USA · Zbl 1135.65042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.