×

Conjoined Lorenz twins – a new pseudohyperbolic attractor in three-dimensional maps and flows. (English) Zbl 07880293


MSC:

37-XX Dynamical systems and ergodic theory
34-XX Ordinary differential equations

Software:

RODES
Full Text: DOI

References:

[1] Gonchenko, S.; Kazakov, A.; Turaev, D., Wild pseudohyperbolic attractor in a four-dimensional Lorenz system, Nonlinearity, 34, 2018-2047, 2021 · Zbl 1472.34106 · doi:10.1088/1361-6544/abc794
[2] Gonchenko, A. S.; Gonchenko, S. V.; Kazakov, A. O.; Kozlov, A., Elements of contemporary theory of dynamical chaos: A tutorial. Part I. Pseudohyperbolic attractors, Int. J. Bifurcat. Chaos, 28, 1830036, 2018 · Zbl 1468.37002 · doi:10.1142/S0218127418300367
[3] Gonchenko, S.; Gonchenko, A.; Kazakov, A.; Samylina, E., On discrete Lorenz-like attractors, Chaos, 31, 023117, 2021 · Zbl 1465.37047 · doi:10.1063/5.0037621
[4] Gonchenko, A. S.; Gonchenko, S. V.; Kazakov, A. O., Richness of chaotic dynamics in nonholonomic models of a Celtic stone, Regul. Chaotic Dyn., 18, 521-538, 2013 · Zbl 1417.37222 · doi:10.1134/S1560354713050055
[5] Borisov, A. V.; Kazakov, A. O.; Sataev, I. R., The reversal and chaotic attractor in the nonholonomic model of Chaplygin’s top, Regul. Chaotic Dyn., 19, 718-733, 2014 · Zbl 1358.70006 · doi:10.1134/S1560354714060094
[6] Turaev, D.; Shilnikov, L. P., An example of a wild strange attractor, Sb.: Math., 189, 291, 1998 · Zbl 0927.37017 · doi:10.1070/SM1998v189n02ABEH000300
[7] Turaev, D.; Shilnikov, L. P., Pseudohyperbolicity and the problem on periodic perturbations of Lorenz-type attractors, Dokl. Math., 77, 17-21, 2008 · Zbl 1157.37022 · doi:10.1134/S1064562408010055
[8] Smale, S., Differentiable dynamical systems, Bull. Am. Math. Soc., 73, 747-817, 1967 · Zbl 0202.55202 · doi:10.1090/S0002-9904-1967-11798-1
[9] Williams, R. F., One-dimensional non-wandering sets, Topology, 6, 473-487, 1967 · Zbl 0159.53702 · doi:10.1016/0040-9383(67)90005-5
[10] Williams, R. F., Expanding attractors, Publ. Math. IHÉS, 43, 169-203, 1974 · Zbl 0279.58013 · doi:10.1007/BF02684369
[11] Plykin, R. V., Sources and sinks of A-diffeomorphisms of surfaces, Math. USSR-Sb., 23, 233, 1974 · Zbl 0324.58013 · doi:10.1070/SM1974v023n02ABEH001719
[12] Anosov, D.; Gould, G.; Aranson, S.; Grines, V.; Plykin, R.; Safonov, A.; Sataev, E.; Shlyachkov, S.; Solodov, V.; Starkov, A.; Stepin, A. M., Dynamical Systems IX: Dynamical Systems with Hyperbolic Behaviour, 1995, Springer
[13] Kuznetsov, S. P., Example of a physical system with a hyperbolic attractor of the Smale-Williams type, Phys. Rev. Lett., 95, 144101, 2005 · doi:10.1103/PhysRevLett.95.144101
[14] Kuznetsov, S.; Seleznev, E., A strange attractor of the Smale-Williams type in the chaotic dynamics of a physical system, J. Exp. Theor. Phys., 102, 355-364, 2006 · doi:10.1134/S1063776106020166
[15] Kuznetsov, S. P.; Pikovsky, A., Autonomous coupled oscillators with hyperbolic strange attractors, Phys. D: Nonlinear Phenom., 232, 87-102, 2007 · Zbl 1128.34024 · doi:10.1016/j.physd.2007.05.008
[16] Kuznetsov, S. P., Hyperbolic Chaos, 2012, Springer · Zbl 1239.37002
[17] Marsden, J., “Lecture I attempts to relate the Navier-Stokes equations to turbulence,” in Turbulence Seminar (Springer, 1977), pp. 1-22.
[18] Williams, R. F., The structure of Lorenz attractors, Publ. Math. IHES, 50, 73-99, 1979 · Zbl 0484.58021 · doi:10.1007/BF02684770
[19] Guckenheimer, J.; Williams, R. F., Structural stability of Lorenz attractors, Publ. Math. Inst. Haut. Études Sci., 50, 59-72, 1979 · Zbl 0436.58018 · doi:10.1007/BF02684769
[20] Shilnikov, L. P., “Bifurcation theory and the Lorenz model,” in Appendix to Russian edition of The Hopf Bifurcation and Its Applications, edited by J. Marsden and M. McCraken (Springer Science & Business Media, 1980), pp. 317-335.
[21] Shilnikov, L., The bifurcation theory and quasi-hyperbolic attractors, Usp. Mat. Nauk, 36, 240-241, 1981
[22] Sinai, J. G.; Vul, E. B., Hyperbolicity conditions for the Lorenz model, Phys. D: Nonlinear Phenom., 2, 3-7, 1981 · Zbl 1194.37043 · doi:10.1016/0167-2789(81)90053-1
[23] Bunimovich, L., “Statistical properties of Lorenz attractors,” in Nonlinear Dynamics and Turbulence (Pitman, 1983), pp. 71-92. · Zbl 0578.58025
[24] Robinson, C., Homoclinic bifurcation to a transitive attractor of Lorenz type, Nonlinearity, 2, 495, 1989 · Zbl 0704.58031 · doi:10.1088/0951-7715/2/4/001
[25] Rychlik, M. R., Lorenz attractors through Shilnikov-type bifurcation. Part I, Ergod. Theory Dyn. Syst., 10, 793-821, 1990 · Zbl 0715.58027 · doi:10.1017/S0143385700005915
[26] Robinson, C., Homoclinic bifurcation to a transitive attractor of Lorenz type, II, SIAM J. Math. Anal., 23, 1255-1268, 1992 · Zbl 0758.58028 · doi:10.1137/0523070
[27] Morales, C. A.; Pacífico, M. J.; Pujals, E. R., On C1 robust singular transitive sets for three-dimensional flows, C. R. Acad. Sci. Ser. I-Math., 326, 81-86, 1998 · Zbl 0918.58036 · doi:10.1016/S0764-4442(97)82717-6
[28] Sataev, E. A., Some properties of singular hyperbolic attractors, Sb.: Math., 200, 35, 2009 · Zbl 1174.37008 · doi:10.4213/sm4925
[29] Tucker, W., The Lorenz attractor exists, C. R. Acad. Sci. Ser. I-Math., 328, 1197-1202, 1999 · Zbl 0935.34050 · doi:10.1016/S0764-4442(99)80439-X
[30] Belykh, V. N.; Barabash, N. V.; Belykh, I. V., A Lorenz-type attractor in a piecewise-smooth system: Rigorous results, Chaos, 29, 103108, 2019 · Zbl 1425.37023 · doi:10.1063/1.5115789
[31] Li, D.; Turaev, D., Persistent heterodimensional cycles in periodic perturbations of Lorenz-like attractors, Nonlinearity, 33, 971, 2020 · Zbl 1430.37028 · doi:10.1088/1361-6544/ab5921
[32] Pusuluri, K.; Meijer, H. G. E.; Shilnikov, A., Homoclinic puzzles and chaos in a nonlinear laser model, Commun. Nonlinear Sci. Numer. Simul., 93, 105503, 2021 · Zbl 1466.78019 · doi:10.1016/j.cnsns.2020.105503
[33] Malkin, M.; Safonov, K., Entropy charts and bifurcations for Lorenz maps with infinite derivatives, Chaos, 31, 043107, 2021 · Zbl 1471.37045 · doi:10.1063/5.0040164
[34] Kazakov, A., On bifurcations of Lorenz attractors in the Lyubimov-Zaks model, Chaos, 31, 093118, 2021 · Zbl 07866711 · doi:10.1063/5.0058585
[35] Belykh, V. N.; Barabash, N. V.; Belykh, I. V., Sliding homoclinic bifurcations in a Lorenz-type system: Analytic proofs, Chaos, 31, 043117, 2021 · Zbl 1473.37060 · doi:10.1063/5.0044731
[36] Barros, D.; Bonatti, C.; Pacifico, M. J.
[37] Afraimovich, V. S.; Bykov, V.; Shilnikov, L. P., On the origin and structure of the Lorenz attractor, Akad. Nauk SSSR Dokl., 234, 336-339, 1977 · Zbl 0451.76052
[38] Newhouse, S. E., The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms, Publ. Math. IHÉS, 50, 101-151, 1979 · Zbl 0445.58022 · doi:10.1007/BF02684771
[39] Gonchenko, S.; Shilnikov, L.; Turaev, D., On models with non-rough Poincaré homoclinic curves, Phys. D: Nonlinear Phenom., 62, 1-14, 1993 · Zbl 0783.58049 · doi:10.1016/0167-2789(93)90268-6
[40] Gonchenko, S. V.; Turaev, D. V.; Shilnikov, L. P., Models with a structurally unstable homoclinic Poincaré curve, Dokl. Akad. Nauk, 320, 269-272, 1991 · Zbl 0772.58040
[41] Gonchenko, S.; Turaev, D.; Shilnikov, L., Homoclinic tangencies of arbitrarily high orders in conservative and dissipative two-dimensional maps, Nonlinearity, 20, 241, 2007 · Zbl 1132.37023 · doi:10.1088/0951-7715/20/2/002
[42] Gonchenko, S.; Turaev, D.; Shilnikov, L., Homoclinic tangencies of arbitrarily high orders in the Newhouse regions, J. Math. Sci., 105, 1738-1778, 2001 · Zbl 1157.37325 · doi:10.1023/A:1011359428672
[43] Gonchenko, S. V.; Ovsyannikov, I.; Simó, C.; Turaev, D., Three-dimensional Hénon-like maps and wild Lorenz-like attractors, Int. J. Bifurcat. Chaos, 15, 3493-3508, 2005 · Zbl 1097.37023 · doi:10.1142/S0218127405014180
[44] Gonchenko, S. V.; Gonchenko, A. S.; Shilnikov, L. P., Towards scenarios of chaos appearance in three-dimensional maps, Rus. J. Nonlin. Dyn., 8, 3-28, 2012 · doi:10.20537/nd1201001
[45] Gonchenko, S.; Gonchenko, A.; Ovsyannikov, I.; Turaev, D., Examples of Lorenz-like attractors in Hénon-like maps, Math. Model. Nat. Phenom., 8, 48-70, 2013 · Zbl 1331.37040 · doi:10.1051/mmnp/20138504
[46] Gonchenko, A.; Gonchenko, S., Variety of strange pseudohyperbolic attractors in three-dimensional generalized Hénon maps, Phys. D: Nonlinear Phenom., 337, 43-57, 2016 · Zbl 1376.37047 · doi:10.1016/j.physd.2016.07.006
[47] Takens, F., Unfoldings of certain singularities of vectorfields: Generalized Hopf bifurcations, J. Differ. Equ., 14, 476-493, 1973 · Zbl 0273.35009 · doi:10.1016/0022-0396(73)90062-4
[48] Arnold, V. I., Geometrical Methods in the Theory of Ordinary Differential Equations, 2012, Springer Science & Business Media
[49] Shilnikov, L. P., Shilnikov, A., Turaev, D., and Chua, L., Methods of Qualitative Theory in Nonlinear Dynamics. Parts I and II, World Scientific Series on Nonlinear Science Series A (World Scientific, 1998, 2001), Vol. 5. · Zbl 0941.34001
[50] Shilnikov, A. L.; Shilnikov, L. P.; Turaev, D., Normal forms and Lorenz attractors, Int. J. Bifurcat. Chaos, 3, 1123-1139, 1123 · Zbl 0885.58080 · doi:10.1142/S0218127493000933
[51] Shilnikov, A., “Bifurcations and chaos in the Shimizu-Marioka system,” in Methods and Qualitative Theory of Differential Equations (Gorky State University, 1986), pp. 180-193.
[52] Shilnikov, A., “Bifurcations and chaos in the Shimizu-Morioka system: II,” in Methods and Qualitative Theory of Differential Equations (Gorky State University, 1989), pp. 130-137.
[53] Shilnikov, A., Bifurcation and chaos in the Morioka-Shimizu system, Sel. Math. Sov., 10, 105-117, 1991 · Zbl 0745.58036
[54] Gonchenko, A.; Gonchenko, S.; Kazakov, A.; Turaev, D., Simple scenarios of onset of chaos in three-dimensional maps, Int. J. Bifurcat. Chaos, 24, 1440005, 2014 · Zbl 1300.37024 · doi:10.1142/S0218127414400057
[55] Simonov, A. A., The investigation of piecewise monotone transformations of an interval by the methods of symbolic dynamics, Dokl. Akad. Nauk, 238, 1063-1066, 1978 · Zbl 0403.54035
[56] Afraimovich, V. S.; Bykov, V.; Shilnikov, L. P., Attractive nonrough limit sets of Lorenz-attractor type, Tr. Mosk. Mat. Obs., 44, 150-212, 1982 · Zbl 0506.58023
[57] Shilnikov, A. L., On bifurcations of the Lorenz attractor in the Shimizu-Morioka model, Phys. D: Nonlinear Phenom., 62, 338-346, 1993 · Zbl 0783.58052 · doi:10.1016/0167-2789(93)90292-9
[58] Kuznetsov, Y. A., A Tutorial for MatContM GUI, 2013, Utretcht University: Utretcht University, Utrecht
[59] Meijer, H., Govaerts, W., Kuznetsov, Y. A., Ghaziani, R. K., and Neirynck, N., “MatContM: A toolbox for continuation and bifurcation of cycles of maps: Command line use,” (Department of Mathematics, Utrecht University, 2017).
[60] Meijer, H. G. E., Govaerts, W., Kuznetsov, Yu. A., Khoshsiar, R., Neirynck, Ghaziani, and N., “MatContM: Numerical bifurcation analysis toolbox in MATLAB,” (Department of Mathematics, Utrecht University, 2020).
[61] Benettin, G.; Galgani, L.; Giorgilli, A.; Strelcyn, J.-M., Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: Theory, Meccanica, 15, 9-20, 1980 · Zbl 0488.70015 · doi:10.1007/BF02128236
[62] Chenciner, A., Bifurcations de points fixes elliptiques-I. Courbes invariantes, Publ. Math. IHÉS, 61, 67-127, 1985 · Zbl 0566.58025 · doi:10.1007/BF02698803
[63] Kuznetsov, Y. A.; Meijer, H. G.; van Veen, L., The fold-flip bifurcation, Int. J. Bifurcat. Chaos, 14, 2253-2282, 2004 · Zbl 1077.37515 · doi:10.1142/S0218127404010576
[64] Gavrilov, N., On some bifurcations of an equilibrium with two pairs of pure imaginary roots, Methods Qual. Theory Differ. Equ., 1, 17-30, 1980
[65] Kuznetsov, Y. A., Elements of Applied Bifurcation Theory, 1998, Springer · Zbl 0914.58025
[66] Gonchenko, S.; Kainov, M.; Kazakov, A.; Turaev, D., On methods for verification of the pseudohyperbolicity of strange attractors, Izv. VUZ. Appl. Nonlinear Dyn., 29, 160-185, 2021 · doi:10.18500/0869-6632-2021-29-1-160-185
[67] Kuptsov, P. V.; Kuznetsov, S. P., Lyapunov analysis of strange pseudohyperbolic attractors: Angles between tangent subspaces, local volume expansion and contraction, Regul. Chaotic Dyn., 23, 908-932, 2018 · Zbl 1412.37045 · doi:10.1134/S1560354718070079
[68] Kuptsov, P. V., Fast numerical test of hyperbolic chaos, Phys. Rev. E, 85, 015203, 2012 · doi:10.1103/PhysRevE.85.015203
[69] Kuptsov, P. V.; Parlitz, U., Theory and computation of covariant Lyapunov vectors, J. Nonlinear Sci., 22, 727-762, 2012 · Zbl 1301.37065 · doi:10.1007/s00332-012-9126-5
[70] Afraimovich, V. and Shilnikov, L., “Strange attractors and quasiattractors,” in Nonlinear Dynamics and Turbulence, edited by G. I. Barenblatt, G. Iooss, and D. D. Joseph (Pitman Advanced Publishing Program, 1983). · Zbl 0521.00028
[71] Galias, Z.; Zgliczyński, P., Computer assisted proof of chaos in the Lorenz equations, Phys. D: Nonlinear Phenom., 115, 165-188, 1998 · Zbl 0941.37018 · doi:10.1016/S0167-2789(97)00233-9
[72] Tucker, W., A rigorous ODE solver and Smale’s 14th problem, Found. Comput. Math., 2, 53-117, 2002 · Zbl 1047.37012 · doi:10.1007/s002080010018
[73] Capinski, M. J.; Wasieczko-Zajac, A., Computer-assisted proof of Shil’nikov homoclinics: With application to the Lorenz-84 model, SIAM J. Appl. Dyn. Syst., 16, 1453-1473, 2017 · Zbl 1371.34061 · doi:10.1137/16M1079956
[74] Capiński, M. J.; Turaev, D.; Zgliczyński, P., Computer assisted proof of the existence of the Lorenz attractor in the Shimizu-Morioka system, Nonlinearity, 31, 5410, 2018 · Zbl 1405.34048 · doi:10.1088/1361-6544/aae032
[75] Kepley, S.; James, J. M., Chaotic motions in the restricted four body problem via Devaney’s saddle-focus homoclinic tangle theorem, J. Differ. Equ., 266, 1709-1755, 2019 · Zbl 1422.37062 · doi:10.1016/j.jde.2018.08.007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.