×

An inverse analysis for determination of space-dependent heat flux in heat conduction problems in the presence of variable thermal conductivity. (English) Zbl 07880283

Summary: This article presents an inverse problem of determination of a space-dependent heat flux in steady-state heat conduction problems. The thermal conductivity of a heat conducting body depends on the temperature distribution over the body. In this study, the simulated measured temperature distribution on part of the boundary is related to the variable heat flux imposed on a different part of the boundary through incorporating the variable thermal conductivity components into the sensitivity coefficients. To do so, a body-fitted grid generation technique is used to mesh the two-dimensional irregular body and solve the direct heat conduction problem. An efficient, accurate, robust, and easy to implement method is presented to compute the sensitivity coefficients through derived expressions. Novelty of the study is twofold: (1) Boundary-fitted grid-based sensitivity analysis in which all sensitivities can be obtained in only one direct solution (at each iteration), irrespective of the number of unknown parameters, and (2) the way the measured temperatures on part of boundary are related to a variable heat flux applied on another part of boundary through components of a variable thermal conductivity. The conjugate gradient method along with the discrepancy principle is used in the inverse analysis to minimize the objective function and achieve the desired solution.

MSC:

80Axx Thermodynamics and heat transfer
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
74Axx Generalities, axiomatics, foundations of continuum mechanics of solids
Full Text: DOI

References:

[1] Alifanov, O. M., Inverse Heat Transfer Problems, 1994, Springer-Verlag · Zbl 0979.80003
[2] Beck, J. V.; Blackwell, B.; Clair, C. R. S., Inverse Heat Conduction: Ill-Posed Problems, 1985, Wiley · Zbl 0633.73120
[3] Özisi̧K, M.; Orlande, H., Inverse Heat Transfer: Fundamentals and Applications, 2000, Taylor & Francis
[4] Artyukhin, E., Reconstruction of the thermal conductivity coefficient from the solution of the nonlinear inverse problem, J. Eng. Phys. Thermophys., 41, 4, 1054-1058, 1981 · doi:10.1007/BF00824761
[5] Alifanov, O. M.; Tryanin, A. P., Determination of the coefficient of internal heat exchange and the effective thermal conductivity of a porous solid on the basis of a nonstationary experiment, J. Eng. Phys., 48, 3, 356-365, 1985 · doi:10.1007/BF00878206
[6] Dantas, L.; Orlande, H., A function estimation approach for determining temperature-dependent thermophysical properties, Inverse Probl. Eng., 3, 4, 261-279, 1996 · doi:10.1080/174159796088027627
[7] Jurkowski, T.; Jarny, Y.; Delaunay, D., Estimation of thermal conductivity of thermoplastics under moulding conditions: An apparatus and an inverse algorithm, Int. J. Heat Mass Transf., 40, 17, 4169-4181, 1997 · doi:10.1016/S0017-9310(97)00027-6
[8] Yang, C.-Y., A linear inverse model for the temperature-dependent thermal conductivity determination in one-dimensional problems, Appl. Math. Model., 22, 2, 1-9, 1998 · Zbl 0913.73011 · doi:10.1016/S0307-904X(97)00101-7
[9] Sawaf, B.; Ozisik, M. N.; Jarny, Y., An inverse analysis to estimate linearly temperature dependent thermal conductivity components and heat capacity of an orthotropic medium, Int. J. Heat Mass Transf., 38, 16, 3005-3010, 1995 · Zbl 0925.73072 · doi:10.1016/0017-9310(95)00044-A
[10] Divo, E.; Kassab, A. J.; Kapat, J. S.; Chyu, M.-K., Retrieval of multidimensional heat transfer coefficient distributions using an inverse BEM-based regularized algorithm: Numerical and experimental results, Eng. Anal. Boundary Element., 29, 2, 150-160, 2005 · Zbl 1182.80013 · doi:10.1016/j.enganabound.2004.08.006
[11] Zhang, J.; Delichatsios, M. A., Determination of the convective heat transfer coefficient in three-dimensional inverse heat conduction problems, Fire Safety J., 44, 5, 681-690, 2009 · doi:10.1016/j.firesaf.2009.01.004
[12] Chen, W.-L.; Yang, Y.-C.; Lee, H.-L., Inverse problem in determining convection heat transfer coefficient of an annular fin, Energy Convers. Manage., 48, 4, 1081-1088, 2007 · doi:10.1016/j.enconman.2006.10.016
[13] Mierzwiczak, M.; Kołodziej, J. A., The determination temperature-dependent thermal conductivity as inverse steady heat conduction problem, Int. J. Heat Mass Transf., 54, 4, 790-796, 2011 · Zbl 1209.80035 · doi:10.1016/j.ijheatmasstransfer.2010.10.024
[14] Czél, B.; Gróf, G., Inverse identification of temperature-dependent thermal conductivity via genetic algorithm with cost function-based rearrangement of genes, Int. J. Heat Mass Transf., 55, 16, 4254-4263, 2012 · doi:10.1016/j.ijheatmasstransfer.2012.03.067
[15] Huang, C.-H.; Jan-Yuan, Y., An inverse problem in simultaneously measuring temperature-dependent thermal conductivity and heat capacity, Int. J. Heat Mass Transf., 38, 18, 3433-3441, 1995 · doi:10.1016/0017-9310(95)00059-I
[16] Mohebbi, F.; Sellier, M., Parameter estimation in heat conduction using a two-dimensional inverse analysis, Int. J. Comput. Meth. Eng. Sci. Mechan., 17, 4, 274-287, 2016 · Zbl 07871432 · doi:10.1080/15502287.2016.1204034
[17] Mohebbi, F.; Sellier, M.; Rabczuk, T., Estimation of linearly temperature-dependent thermal conductivity using an inverse analysis, Int. J. Thermal Sci., 117, 68-76, 2017 · doi:10.1016/j.ijthermalsci.2017.03.016
[18] Mohebbi, F.; Sellier, M., Identification of space- and temperature-dependent heat transfer coefficient, Int. J. Thermal Sci., 128, 28-37, 2018 · doi:10.1016/j.ijthermalsci.2018.02.007
[19] Mohebbi, F.; Sellier, M., Estimation of thermal conductivity, heat transfer coefficient, and heat flux using a three dimensional inverse analysis, Int. J. Thermal Sci., 99, 258-270, 2016 · doi:10.1016/j.ijthermalsci.2015.09.002
[20] Tervola, P., A method to determine the thermal conductivity from measured temperature profiles, Int. J. Heat Mass Transf., 32, 8, 1425-1430, 1989 · Zbl 0685.73055 · doi:10.1016/0017-9310(89)90066-5
[21] Kim, S., A simple direct estimation of temperature-dependent thermal conductivity with kirchhoff transformation, Int. Commun. Heat Mass Transf., 28, 4, 537-544, 2001 · doi:10.1016/S0735-1933(01)00257-3
[22] Lin, J.-H.; Cha, Chen, O. K.; Yang, Y.-T., Inverse method for estimating thermal conductivity in one-dimensional heat conduction problems, J. Thermophys. Heat Transf., 15, 34-41, 2001
[23] Chantasiriwan, S., Steady-state determination of temperature-dependent thermal conductivity, Int. Commun. Heat Mass Transf., 29, 6, 811-819, 2002 · doi:10.1016/S0735-1933(02)00371-8
[24] Sawaf, B.; Özisik, M. N., Determining the constant thermal conductivities of orthotropic materials by inverse analysis, Int. Commun. Heat Mass Transf., 22, 2, 201-211, 1995 · doi:10.1016/0735-1933(95)00005-4
[25] Lam, T. T.; Yeung, W. K., Inverse determination of thermal conductivity for one-dimensional problems, J. Thermophys. Heat Transf., 9, 2, 335-344, 1995 · doi:10.2514/3.665
[26] Lesnic, D.; Elliott, L.; Ingham, D. B., Identification of the thermal conductivity and heat capacity in unsteady nonlinear heat conduction problems using the boundary element method, J. Comput. Phys., 126, 2, 410-420, 1996 · Zbl 0874.65070 · doi:10.1006/jcph.1996.0146
[27] Gnanasekaran, N.; Balaji, C., An inexpensive technique to simultaneously determine total emissivity and natural convection heat transfer coefficient from transient experiments, Exp. Heat Transf., 23, 3, 235-258, 2010 · doi:10.1080/08916150903564788
[28] Konda Reddy, B.; Balaji, C., Estimation of temperature dependent heat transfer coefficient in a vertical rectangular fin using liquid crystal thermography, Int. J. Heat Mass Transf., 55, 14, 3686-3693, 2012 · doi:10.1016/j.ijheatmasstransfer.2012.03.015
[29] Orlande, H. R.; Fudym, O.; Maillet, D.; Cotta, R. M., Thermal Measurements and Inverse Techniques, 2011, CRC Press
[30] Bozzoli, F.; Mocerino, A.; Rainieri, S.; Vocale, P., Inverse heat transfer modeling applied to the estimation of the apparent thermal conductivity of an intumescent fire retardant paint, Exp. Thermal Fluid Sci., 90, 143-152, 2018 · doi:10.1016/j.expthermflusci.2017.09.006
[31] Cattani, L.; Maillet, D.; Bozzoli, F.; Rainieri, S., Estimation of the local convective heat transfer coefficient in pipe flow using a 2D thermal quadrupole model and truncated singular value decomposition, Int. J. Heat Mass Transf., 91, 1034-1045, 2015 · doi:10.1016/j.ijheatmasstransfer.2015.08.016
[32] Kadam, A. R.; Prabhu, S. V.; Hindasageri, V., Simultaneous estimation of heat transfer coefficient and reference temperature from impinging flame jets, Int. J. Thermal Sci., 131, 48-57, 2018 · doi:10.1016/j.ijthermalsci.2018.05.017
[33] Taler, J., Determination of local heat transfer coefficient from the solution of the inverse heat conduction problem, Forschung im Ingenieurwesen, 71, 2, 69-78, 2007 · doi:10.1007/s10010-006-0044-2
[34] Maillet, D.; Degiovanni, A.; Pasquetti, R., Inverse heat conduction applied to the measurement of heat transfer coefficient on a cylinder: Comparison between an analytical and a boundary element technique, J. Heat Transf., 113, 3, 549-557, 1991 · doi:10.1115/1.2910601
[35] Taler, J., Nonlinear steady-state inverse heat conduction problem with space-variable boundary conditions, J. Heat Transf. (Trans. ASME (Am. Soc. Mechan. Eng.), Series C);(USA), 114, 1992
[36] Beck, J. V., Surface heat flux determination using an integral method, Nucl. Eng. Design, 7, 2, 170-178, 1968 · doi:10.1016/0029-5493(68)90058-7
[37] Carmona, S.; Rouizi, Y.; Quéméner, O.; Joly, F.; Neveu, A., Estimation of heat flux by using reduced model and the adjoint method. Application to a brake disc rotating, Int. J. Thermal Sci., 131, 94-104, 2018 · doi:10.1016/j.ijthermalsci.2018.04.036
[38] Huang, C. H.; Wang, S. P., A three-dimensional inverse heat conduction problem in estimating surface heat flux by conjugate gradient method, Int. J. Heat Mass Transf., 42, 18, 3387-3403, 1999 · Zbl 0977.74594 · doi:10.1016/S0017-9310(99)00020-4
[39] Liu, F.-B., Inverse estimation of wall heat flux by using particle swarm optimization algorithm with Gaussian mutation, Int. J. Thermal Sci., 54, 62-69, 2012 · doi:10.1016/j.ijthermalsci.2011.11.013
[40] Yang, Y.-T.; Hsu, P.-T.; Chen, Co-K., A three-dimensional inverse heat conduction problem approach for estimating the heat flux and surface temperature of a hollow cylinder, J. Phys. D: Appl. Phys., 30, 9, 1326,, 1997 · doi:10.1088/0022-3727/30/9/007
[41] Bozzoli, F.; Rainieri, S., Comparative application of CGM and Wiener filtering techniques for the estimation of heat flux distribution, Inverse Probl. Sci. Eng., 19, 4, 551-573, 2011 · Zbl 1220.65127 · doi:10.1080/17415977.2010.531466
[42] Hsieh, C. K.; Kassab, A. J., A general method for the solution of inverse heat conduction problems with partially unknown system geometries, Int. J. Heat Mass Transf., 29, 1, 47-58, 1986 · Zbl 0585.73196 · doi:10.1016/0017-9310(86)90033-5
[43] Dulikravich, G.; Martin, T., Inverse shape and boundary condition problems and optimization in heat conduction, Adv. Numer. Heat Transf., 1, 381-426, 1996
[44] Mohebbi, F.; Sellier, M., Optimal shape design in heat transfer based on body-fitted grid generation, Int. J. Comput. Meth. Eng. Sci. Mechan., 14, 3, 227-243, 2013 · Zbl 07871346 · doi:10.1080/15502287.2012.711426
[45] Mohebbi, F.; Sellier, M., Three-dimensional optimal shape design in heat transfer based on body-fitted grid generation, Int. J. Comput. Meth. Eng. Sci. Mechan., 14, 6, 473-490, 2013 · Zbl 07871362 · doi:10.1080/15502287.2013.784384
[46] Mohebbi, F.; Sellier, M.; Rabczuk, T., Inverse problem of simultaneously estimating the thermal conductivity and boundary shape, Int. J. Comput. Meth. Eng. Sci. Mechan., 2017 · Zbl 07871455
[47] Sarvari, S. M. H., Optimal geometry design of radiative enclosures using the genetic algorithm, Numer. Heat Transf., Part A: Appl., 52, 2, 127-143, 2007 · doi:10.1080/10407780601115020
[48] Özişik, M., Finite Difference Methods in Heat Transfer, 1994, CRC Press · Zbl 0855.65097
[49] Mohebbi, F., Optimal Shape Design Based on Body-Fitted Grid Generation, 2014, University of Canterbury · Zbl 1407.76052 · doi:10.1155/2014/505372
[50] Polak, E.; Ribiere, G., Note sur la convergence de méthodes de directions conjuguées, Revue Française D’Informatique et de Recherche Opérationnelle, 16, 35-43, 1969 · Zbl 0174.48001 · doi:10.1051/m2an/196903R100351
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.