×

Comparative application of CGM and Wiener filtering techniques for the estimation of heat flux distribution. (English) Zbl 1220.65127

Summary: The conjugate gradient method (CGM), formulated with the adjoint problem, is adopted in this study as the functional minimization tool for the solution of the 2-D steady-state linear inverse heat conduction problem with the aim of estimating the heat flux density distribution on a given surface using the temperature distribution as input data. The robustness of the solution strategy, based on an iterative regularization scheme, is compared with another consolidated estimation methodology adopted in the literature to handle the same problem: the Wiener filtering technique. The comparison is performed by adopting a noisy test signal aimed at simulating infrared temperature maps. Using a comparative approach, the problem’s particular difficulties related to the high number of unknowns and to the deficiency of the estimation techniques at the domain’s geometrical boundaries are discussed.

MSC:

65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs
35K05 Heat equation
35R30 Inverse problems for PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Alifanov OM, Inverse Heat Transfer Problems (1994)
[2] Beck JV, Inverse Heat Conduction – Ill-Posed Problems (1985)
[3] Özisik MN, Inverse Heat Transfer (2000)
[4] Matsevity YM, High Temp. 17 pp 75– (1979)
[5] DOI: 10.1007/BF01254738 · doi:10.1007/BF01254738
[6] Matsevity YM, in Mathematical Research, Systems, Analysis and Simulation 2 pp 175– (1988)
[7] DOI: 10.1016/S0035-3159(98)80041-X · doi:10.1016/S0035-3159(98)80041-X
[8] DOI: 10.1016/S0894-1777(02)00116-4 · doi:10.1016/S0894-1777(02)00116-4
[9] DOI: 10.1590/S1678-58782006000100001 · doi:10.1590/S1678-58782006000100001
[10] Matsevity Y, Syst. Anal. Model. Simulat. 4 pp 371– (1988)
[11] Tikhonov AN, Solution of Ill-posed Problems (1977)
[12] DOI: 10.1115/1.3250665 · doi:10.1115/1.3250665
[13] DOI: 10.1016/0017-9310(96)00034-8 · doi:10.1016/0017-9310(96)00034-8
[14] DOI: 10.1016/j.ijheatmasstransfer.2007.05.004 · Zbl 1152.80319 · doi:10.1016/j.ijheatmasstransfer.2007.05.004
[15] DOI: 10.1016/j.ijthermalsci.2007.07.017 · doi:10.1016/j.ijthermalsci.2007.07.017
[16] DOI: 10.1080/10682760290022555 · doi:10.1080/10682760290022555
[17] DOI: 10.1080/10682760290022564 · doi:10.1080/10682760290022564
[18] DOI: 10.1016/j.ijheatmasstransfer.2008.11.015 · Zbl 1158.80306 · doi:10.1016/j.ijheatmasstransfer.2008.11.015
[19] DOI: 10.1080/10407798908944902 · doi:10.1080/10407798908944902
[20] DOI: 10.1115/1.1372193 · doi:10.1115/1.1372193
[21] DOI: 10.1115/1.2824251 · doi:10.1115/1.2824251
[22] Matsevity Y, High Temp. 30 pp 71– (1992)
[23] DOI: 10.1016/S0894-1777(03)00037-2 · doi:10.1016/S0894-1777(03)00037-2
[24] DOI: 10.1016/S0017-9310(02)00132-1 · doi:10.1016/S0017-9310(02)00132-1
[25] DOI: 10.1007/BF01104861 · doi:10.1007/BF01104861
[26] Alifanov OM, High Temp. 25 pp 520– (1987)
[27] DOI: 10.1080/00986449908912154 · doi:10.1080/00986449908912154
[28] DOI: 10.1016/j.applthermaleng.2004.12.003 · doi:10.1016/j.applthermaleng.2004.12.003
[29] DOI: 10.1016/0017-9310(91)90251-9 · Zbl 0729.73930 · doi:10.1016/0017-9310(91)90251-9
[30] Alifanov OM, Sov. Phys. Dokl. 325 pp 409– (1992)
[31] DOI: 10.1080/174159799088027701 · doi:10.1080/174159799088027701
[32] DOI: 10.1007/BF00873834 · doi:10.1007/BF00873834
[33] Carslaw HS, Conduction of Heat in Solids (1986)
[34] DOI: 10.1016/j.ijheatmasstransfer.2008.02.002 · Zbl 1144.80371 · doi:10.1016/j.ijheatmasstransfer.2008.02.002
[35] Morozov VA, Methods for Solving Incorrectly Posed Problems (1984) · doi:10.1007/978-1-4612-5280-1
[36] DOI: 10.1007/BF00859694 · doi:10.1007/BF00859694
[37] Lim JS, Two-Dimensional Signal and Image Processing (1990)
[38] DOI: 10.1016/j.expthermflusci.2008.03.006 · doi:10.1016/j.expthermflusci.2008.03.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.