×

Fast QSC solver: tool for systematic study of \(\mathcal{N} = 4\) super-Yang-Mills spectrum. (English) Zbl 07877486

Summary: Integrability methods give us access to a number of observables in the planar \(\mathcal{N} = 4\) SYM. Among them, the Quantum Spectral Curve (QSC) governs the spectrum of anomalous dimensions. Low lying states were successfully studied in the past using the QSC. However, with the increased demand for a systematic study of a large number of states for various applications, there is a clear need for a fast QSC solver which can easily access a large number of excited states. Here, we fill this gap by developing a new algorithm and applied it to study all 219 states with the bare dimension \(\Delta_0 \leq 6\) in a wide range of couplings.
The new algorithm has an improved performance at weak coupling and allows to glue numerics smoothly the available perturbative data, resolving the previous obstruction. Further \(\sim 8\)-fold efficiency gain comes from C++ implementation over the best available Mathematica implementation. We have made the code and the data to be available via a GitHub repository.
The method is generalisable for non-local observables as well as for other theories such as deformations of \(\mathcal{N} = 4\) SYM and ABJM. It may find applications in the separation of variables and bootstrability approaches to the correlation functions. Some applications to correlators at strong coupling are also presented.

MSC:

81-XX Quantum theory

Software:

qsc; Mathematica

References:

[1] N. Gromov, V. Kazakov and P. Vieira, Exact Spectrum of Planar \(\mathcal{N} = 4\) Supersymmetric Yang-Mills Theory: Konishi Dimension at Any Coupling, Phys. Rev. Lett.104 (2010) 211601 [arXiv:0906.4240] [INSPIRE].
[2] B. Basso, An exact slope for AdS/CFT, arXiv:1109.3154 [INSPIRE].
[3] Gromov, N.; Serban, D.; Shenderovich, I.; Volin, D., Quantum folded string and integrability: From finite size effects to Konishi dimension, JHEP, 08, 046, 2011 · Zbl 1298.81291 · doi:10.1007/JHEP08(2011)046
[4] Roiban, R.; Tseytlin, AA, Semiclassical string computation of strong-coupling corrections to dimensions of operators in Konishi multiplet, Nucl. Phys. B, 848, 251, 2011 · Zbl 1215.81095 · doi:10.1016/j.nuclphysb.2011.02.016
[5] Vallilo, BC; Mazzucato, L., The Konishi multiplet at strong coupling, JHEP, 12, 029, 2011 · Zbl 1306.81282 · doi:10.1007/JHEP12(2011)029
[6] Gromov, N.; Valatka, S., Deeper Look into Short Strings, JHEP, 03, 058, 2012 · Zbl 1309.81219 · doi:10.1007/JHEP03(2012)058
[7] Frolov, S., Scaling dimensions from the mirror TBA, J. Phys. A, 45, 305402, 2012 · Zbl 1251.81074 · doi:10.1088/1751-8113/45/30/305402
[8] N. Gromov, F. Levkovich-Maslyuk, G. Sizov and S. Valatka, Quantum spectral curve at work: from small spin to strong coupling in \(\mathcal{N} = 4\) SYM, JHEP07 (2014) 156 [arXiv:1402.0871] [INSPIRE].
[9] Hegedús, Á.; Konczer, J., Strong coupling results in the AdS_5/CFT_4correspondence from the numerical solution of the quantum spectral curve, JHEP, 08, 061, 2016 · Zbl 1390.81439 · doi:10.1007/JHEP08(2016)061
[10] Marboe, C.; Volin, D., The full spectrum of AdS_5/CFT_4I: Representation theory and one-loop Q-system, J. Phys. A, 51, 165401, 2018 · Zbl 1433.81123 · doi:10.1088/1751-8121/aab34a
[11] C. Marboe and D. Volin, The full spectrum of AdS_5/CFT_4II: Weak coupling expansion via the quantum spectral curve, J. Phys. A54 (2021) 055201 [arXiv:1812.09238] [INSPIRE]. · Zbl 1519.17011
[12] A. Cavaglià, N. Gromov, J. Julius and M. Preti, Integrability and conformal bootstrap: One dimensional defect conformal field theory, Phys. Rev. D105 (2022) L021902 [arXiv:2107.08510] [INSPIRE].
[13] Cavaglià, A.; Gromov, N.; Julius, J.; Preti, M., Bootstrability in defect CFT: integrated correlators and sharper bounds, JHEP, 05, 164, 2022 · Zbl 1522.81467 · doi:10.1007/JHEP05(2022)164
[14] S. Caron-Huot, F. Coronado, A.-K. Trinh and Z. Zahraee, Bootstrapping \(\mathcal{N} = 4\) sYM correlators using integrability, JHEP02 (2023) 083 [arXiv:2207.01615] [INSPIRE]. · Zbl 1541.81187
[15] A. Cavaglià, N. Gromov, J. Julius and M. Preti, Integrated correlators from integrability: Maldacena-Wilson line in \(\mathcal{N} = 4\) SYM, JHEP04 (2023) 026 [arXiv:2211.03203] [INSPIRE].
[16] M. Alfimov, N. Gromov and V. Kazakov, Chapter 13:\( \mathcal{N} = 4\) SYM Quantum Spectral Curve in BFKL Regime, in From the Past to the Future, J. Bartels et al. eds., World Scientific (2021), p. 335-367 [doi:10.1142/9789811231124_0013] [arXiv:2003.03536] [INSPIRE].
[17] N. Beisert and M. Staudacher, Long-range \(\mathfrak{psu} (2, 2|4)\) Bethe Ansatze for gauge theory and strings, Nucl. Phys. B727 (2005) 1 [hep-th/0504190] [INSPIRE]. · Zbl 1126.81328
[18] N. Beisert, B. Eden and M. Staudacher, Transcendentality and Crossing, J. Stat. Mech.0701 (2007) P01021 [hep-th/0610251] [INSPIRE].
[19] Quinn, E.; Frolov, S., Excited states in Bethe ansatz solvable models and the dressing of spin and charge, J. Phys. A, 46, 205001, 2013 · Zbl 1271.82005 · doi:10.1088/1751-8113/46/20/205001
[20] N. Gromov, V. Kazakov, S. Leurent and D. Volin, Quantum Spectral Curve for Planar \(\mathcal{N} = 4\) Super-Yang-Mills Theory, Phys. Rev. Lett.112 (2014) 011602 [arXiv:1305.1939] [INSPIRE].
[21] Gromov, N.; Kazakov, V.; Leurent, S.; Volin, D., Quantum spectral curve for arbitrary state/operator in AdS_5/CFT_4, JHEP, 09, 187, 2015 · Zbl 1388.81214 · doi:10.1007/JHEP09(2015)187
[22] Leurent, S.; Volin, D., Multiple zeta functions and double wrapping in planar N = 4 SYM, Nucl. Phys. B, 875, 757, 2013 · Zbl 1331.81276 · doi:10.1016/j.nuclphysb.2013.07.020
[23] Marboe, C.; Volin, D., Quantum spectral curve as a tool for a perturbative quantum field theory, Nucl. Phys. B, 899, 810, 2015 · Zbl 1331.81209 · doi:10.1016/j.nuclphysb.2015.08.021
[24] Agmon, NB; Chester, SM; Pufu, SS, Solving M-theory with the Conformal Bootstrap, JHEP, 06, 159, 2018 · Zbl 1395.81195 · doi:10.1007/JHEP06(2018)159
[25] N. Gromov, F. Levkovich-Maslyuk and G. Sizov, Pomeron Eigenvalue at Three Loops in \(\mathcal{N} = 4\) Supersymmetric Yang-Mills Theory, Phys. Rev. Lett.115 (2015) 251601 [arXiv:1507.04010] [INSPIRE].
[26] Gromov, N.; Levkovich-Maslyuk, F.; Sizov, G., Quantum Spectral Curve and the Numerical Solution of the Spectral Problem in AdS_5/CFT_4, JHEP, 06, 036, 2016 · Zbl 1388.81106 · doi:10.1007/JHEP06(2016)036
[27] M. Alfimov, N. Gromov and G. Sizov, BFKL spectrum of \(\mathcal{N} = 4\): non-zero conformal spin, JHEP07 (2018) 181 [arXiv:1802.06908] [INSPIRE]. · Zbl 1395.81198
[28] N. Gromov and F. Levkovich-Maslyuk, Quantum Spectral Curve for a cusped Wilson line in \(\mathcal{N} = 4\) SYM, JHEP04 (2016) 134 [arXiv:1510.02098] [INSPIRE]. · Zbl 1388.83660
[29] N. Gromov and F. Levkovich-Maslyuk, Quark-anti-quark potential in \(\mathcal{N} = 4\) SYM, JHEP12 (2016) 122 [arXiv:1601.05679] [INSPIRE]. · Zbl 1390.81597
[30] A. Cavaglià, N. Gromov and F. Levkovich-Maslyuk, Quantum spectral curve and structure constants in \(\mathcal{N} = 4\) SYM: cusps in the ladder limit, JHEP10 (2018) 060 [arXiv:1802.04237] [INSPIRE]. · Zbl 1402.81217
[31] Giombi, S.; Komatsu, S., More Exact Results in the Wilson Loop Defect CFT: Bulk-Defect OPE, Nonplanar Corrections and Quantum Spectral Curve, J. Phys. A, 52, 125401, 2019 · Zbl 1507.81172 · doi:10.1088/1751-8121/ab046c
[32] Grabner, D.; Gromov, N.; Julius, J., Excited States of One-Dimensional Defect CFTs from the Quantum Spectral Curve, JHEP, 07, 042, 2020 · Zbl 1451.81346 · doi:10.1007/JHEP07(2020)042
[33] J. Julius, Modern techniques for solvable models, Ph.D. thesis, King’s College London, Strand, London, WC2R 2LS, U.K. (2021) [INSPIRE].
[34] N. Gromov, J. Julius, Á. Hegedús and N. Sokolova, Quantum Spectral Curve Solver for Full Spectrum of one-dimensional Wilson Line-defect Superconformal Field Theory, to appear.
[35] Bombardelli, D., The full Quantum Spectral Curve for AdS_4/CFT_3, JHEP, 09, 140, 2017 · Zbl 1382.81171 · doi:10.1007/JHEP09(2017)140
[36] Bombardelli, D.; Cavaglià, A.; Conti, R.; Tateo, R., Exploring the spectrum of planar AdS_4/CFT_3at finite coupling, JHEP, 04, 117, 2018 · Zbl 1390.81489 · doi:10.1007/JHEP04(2018)117
[37] Correa, DH; Giraldo-Rivera, VI; Lagares, M., Integrable Wilson loops in ABJM: a Y-system computation of the cusp anomalous dimension, JHEP, 06, 179, 2023 · Zbl 07716885 · doi:10.1007/JHEP06(2023)179
[38] Lee, RN; Onishchenko, AI, ABJM quantum spectral curve and Mellin transform, JHEP, 05, 179, 2018 · Zbl 1391.81168 · doi:10.1007/JHEP05(2018)179
[39] Lee, RN; Onishchenko, AI, Toward an analytic perturbative solution for the ABJM quantum spectral curve, Teor. Mat. Fiz., 198, 292, 2019 · Zbl 1421.82006 · doi:10.4213/tmf9553
[40] Lee, RN; Onishchenka, AI, ABJM quantum spectral curve at twist I: algorithmic perturbative solution, JHEP, 11, 018, 2019 · Zbl 1429.81065 · doi:10.1007/JHEP11(2019)018
[41] Cavaglià, A., Quantum Spectral Curve for AdS_3/CFT_2: a proposal, JHEP, 12, 048, 2021 · Zbl 1521.81251 · doi:10.1007/JHEP12(2021)048
[42] Ekhammar, S.; Volin, D., Monodromy bootstrap for SU(2|2) quantum spectral curves: from Hubbard model to AdS_3/CFT_2, JHEP, 03, 192, 2022 · Zbl 1522.81347 · doi:10.1007/JHEP03(2022)192
[43] Cavaglià, A.; Ekhammar, S.; Gromov, N.; Ryan, P., Exploring the Quantum Spectral Curve for AdS_3/CFT_2, JHEP, 12, 089, 2023 · Zbl 07807206 · doi:10.1007/JHEP12(2023)089
[44] Marboe, C.; Widén, E., The fate of the Konishi multiplet in the β-deformed Quantum Spectral Curve, JHEP, 01, 026, 2020 · Zbl 1434.81111 · doi:10.1007/JHEP01(2020)026
[45] Levkovich-Maslyuk, F.; Preti, M., Exploring the ground state spectrum of γ-deformed N = 4 SYM, JHEP, 06, 146, 2022 · Zbl 1522.81643 · doi:10.1007/JHEP06(2022)146
[46] D. Grabner, N. Gromov, V. Kazakov and G. Korchemsky, Strongly γ-Deformed \(\mathcal{N} = 4\) Supersymmetric Yang-Mills Theory as an Integrable Conformal Field Theory, Phys. Rev. Lett.120 (2018) 111601 [arXiv:1711.04786] [INSPIRE].
[47] V. Kazakov, Quantum Spectral Curve of γ-twisted \(\mathcal{N} = 4\) SYM theory and fishnet CFT, arXiv:1802.02160 [doi:10.1142/9789813233867_0016] [INSPIRE].
[48] R. Klabbers, Quantum spectral curve for the η-deformed AdS_5 × S^5superstring, Ph.D. thesis, Universität Hamburg, 22761 Hamburg, Germany (2017) [arXiv:1804.06741] [INSPIRE].
[49] Klabbers, R.; van Tongeren, SJ, Quantum Spectral Curve for the eta-deformed AdS_5 × S^5superstring, Nucl. Phys. B, 925, 252, 2017 · Zbl 1375.81204 · doi:10.1016/j.nuclphysb.2017.10.005
[50] Harmark, T.; Wilhelm, M., The Hagedorn temperature of AdS_5/CFT_4at finite coupling via the Quantum Spectral Curve, Phys. Lett. B, 786, 53, 2018 · Zbl 1404.81209 · doi:10.1016/j.physletb.2018.09.033
[51] Harmark, T.; Wilhelm, M., Solving the Hagedorn temperature of AdS_5/CFT_4via the Quantum Spectral Curve: chemical potentials and deformations, JHEP, 07, 136, 2022 · Zbl 1522.81628 · doi:10.1007/JHEP07(2022)136
[52] Ekhammar, S.; Minahan, JA; Thull, C., The asymptotic form of the Hagedorn temperature in planar super Yang-Mills, J. Phys. A, 56, 435401, 2023 · Zbl 1533.81080 · doi:10.1088/1751-8121/acf9d0
[53] Alday, LF; Hansen, T.; Silva, JA, AdS Virasoro-Shapiro from dispersive sum rules, JHEP, 10, 036, 2022 · Zbl 1534.81128 · doi:10.1007/JHEP10(2022)036
[54] Alday, LF; Hansen, T.; Silva, JA, AdS Virasoro-Shapiro from single-valued periods, JHEP, 12, 010, 2022 · Zbl 1536.81205 · doi:10.1007/JHEP12(2022)010
[55] Gliozzi, F.; Scherk, J.; Olive, DI, Supersymmetry, Supergravity Theories and the Dual Spinor Model, Nucl. Phys. B, 122, 253, 1977 · doi:10.1016/0550-3213(77)90206-1
[56] Brink, L.; Schwarz, JH; Scherk, J., Supersymmetric Yang-Mills Theories, Nucl. Phys. B, 121, 77, 1977 · doi:10.1016/0550-3213(77)90328-5
[57] Sohnius, MF; West, PC, Conformal Invariance in N = 4 Supersymmetric Yang-Mills Theory, Phys. Lett. B, 100, 245, 1981 · doi:10.1016/0370-2693(81)90326-9
[58] Mandelstam, S., Light Cone Superspace and the Ultraviolet Finiteness of the N = 4 Model, Nucl. Phys. B, 213, 149, 1983 · doi:10.1016/0550-3213(83)90179-7
[59] Howe, PS; Stelle, KS; Townsend, PK, Miraculous Ultraviolet Cancellations in Supersymmetry Made Manifest, Nucl. Phys. B, 236, 125, 1984 · doi:10.1016/0550-3213(84)90528-5
[60] Brink, L.; Lindgren, O.; Nilsson, BEW, N = 4 Yang-Mills Theory on the Light Cone, Nucl. Phys. B, 212, 401, 1983 · doi:10.1016/0550-3213(83)90678-8
[61] Dobrev, VK; Petkova, VB, All Positive Energy Unitary Irreducible Representations of Extended Conformal Supersymmetry, Phys. Lett. B, 162, 127, 1985 · doi:10.1016/0370-2693(85)91073-1
[62] Minahan, JA; Zarembo, K., The Bethe ansatz for N = 4 superYang-Mills, JHEP, 03, 013, 2003 · doi:10.1088/1126-6708/2003/03/013
[63] G. ’t Hooft, A Planar Diagram Theory for Strong Interactions, Nucl. Phys. B72 (1974) 461 [INSPIRE].
[64] Witten, E., Baryons in the 1/n Expansion, Nucl. Phys. B, 160, 57, 1979 · doi:10.1016/0550-3213(79)90232-3
[65] Green, MB; Schwarz, JH; Brink, L., N = 4 Yang-Mills and N = 8 Supergravity as Limits of String Theories, Nucl. Phys. B, 198, 474, 1982 · doi:10.1016/0550-3213(82)90336-4
[66] S. Rychkov, EPFL Lectures on Conformal Field Theory in D ≥ 3 Dimensions, arXiv:1601.05000 [doi:10.1007/978-3-319-43626-5] [INSPIRE]. · Zbl 1365.81007
[67] D. Simmons-Duffin, The Conformal Bootstrap, in the proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings, Boulder, U.S.A., June 01-26 (2015) [doi:10.1142/9789813149441_0001] [arXiv:1602.07982] [INSPIRE].
[68] P. Di Francesco, P. Mathieu and D. Senechal, Conformal Field Theory, Springer-Verlag, New York (1997) [doi:10.1007/978-1-4612-2256-9]. · Zbl 0869.53052
[69] D. Poland, S. Rychkov and A. Vichi, The Conformal Bootstrap: Theory, Numerical Techniques, and Applications, Rev. Mod. Phys.91 (2019) 015002 [arXiv:1805.04405] [INSPIRE].
[70] Andrianopoli, L.; Ferrara, S., On short and long SU(2, 2/4) multiplets in the AdS/CFT correspondence, Lett. Math. Phys., 48, 145, 1999 · Zbl 0933.81047 · doi:10.1023/A:1007550823624
[71] Andrianopoli, L.; Ferrara, S.; Sokatchev, E.; Zupnik, B., Shortening of primary operators in N extended SCFT_4and harmonic superspace analyticity, Adv. Theor. Math. Phys., 4, 1149, 2000
[72] Lee, S.; Minwalla, S.; Rangamani, M.; Seiberg, N., Three point functions of chiral operators in D = 4, N = 4 SYM at large N, Adv. Theor. Math. Phys., 2, 697, 1998 · Zbl 0923.53033 · doi:10.4310/ATMP.1998.v2.n4.a1
[73] G. Arutyunov, S. Frolov and A.C. Petkou, Operator product expansion of the lowest weight CPOs in \(\mathcal{N} = 4\) SYM_4at strong coupling, Nucl. Phys. B586 (2000) 547 [hep-th/0005182] [INSPIRE]. · Zbl 1043.81709
[74] Dolan, FA; Osborn, H., On short and semi-short representations for four-dimensional superconformal symmetry, Annals Phys., 307, 41, 2003 · Zbl 1035.81056 · doi:10.1016/S0003-4916(03)00074-5
[75] Beisert, N., The complete one loop dilatation operator of N = 4 superYang-Mills theory, Nucl. Phys. B, 676, 3, 2004 · Zbl 1097.81575 · doi:10.1016/j.nuclphysb.2003.10.019
[76] Gunaydin, M.; Marcus, N., The spectrum of the S^5Compactification of the Chiral N = 2, D = 10 Supergravity and the Unitary Supermultiplets of U(2, 2/4), Class. Quant. Grav., 2, L11, 1985 · Zbl 0575.53060 · doi:10.1088/0264-9381/2/2/001
[77] Bars, I.; Gunaydin, M., Unitary Representations of Noncompact Supergroups, Commun. Math. Phys., 91, 31, 1983 · Zbl 0531.17002 · doi:10.1007/BF01206048
[78] Beisert, N., The dilatation operator of N = 4 super Yang-Mills theory and integrability, Phys. Rept., 405, 1, 2004 · doi:10.1016/j.physrep.2004.09.007
[79] Beisert, N., The su(2|3) dynamic spin chain, Nucl. Phys. B, 682, 487, 2004 · Zbl 1036.82513 · doi:10.1016/j.nuclphysb.2003.12.032
[80] Gromov, N.; Levkovich-Maslyuk, F.; Sizov, G., New Construction of Eigenstates and Separation of Variables for SU(N) Quantum Spin Chains, JHEP, 09, 111, 2017 · Zbl 1382.81149 · doi:10.1007/JHEP09(2017)111
[81] J.M. Maillet and G. Niccoli, On quantum separation of variables, J. Math. Phys.59 (2018) 091417 [arXiv:1807.11572] [INSPIRE]. · Zbl 1402.81174
[82] P. Ryan and D. Volin, Separated variables and wave functions for rational gl(N) spin chains in the companion twist frame, J. Math. Phys.60 (2019) 032701 [arXiv:1810.10996] [INSPIRE]. · Zbl 1426.82014
[83] J.M. Maillet and G. Niccoli, Complete spectrum of quantum integrable lattice models associated to \(Y( \mathfrak{gl} \)(n)) by separation of variables, SciPost Phys.6 (2019) 071 [arXiv:1810.11885] [INSPIRE].
[84] P. Ryan and D. Volin, Separation of Variables for Rational \(\mathfrak{gl} \)(n) Spin Chains in Any Compact Representation, via Fusion, Embedding Morphism and Bäcklund Flow, Commun. Math. Phys.383 (2021) 311 [arXiv:2002.12341] [INSPIRE]. · Zbl 1467.82060
[85] Maillet, JM; Niccoli, G.; Vignoli, L., On Scalar Products in Higher Rank Quantum Separation of Variables, SciPost Phys., 9, 086, 2020 · doi:10.21468/SciPostPhys.9.6.086
[86] Cavaglià, A.; Gromov, N.; Levkovich-Maslyuk, F., Separation of variables and scalar products at any rank, JHEP, 09, 052, 2019 · Zbl 1423.81139 · doi:10.1007/JHEP09(2019)052
[87] Gromov, N.; Levkovich-Maslyuk, F.; Ryan, P., Determinant form of correlators in high rank integrable spin chains via separation of variables, JHEP, 05, 169, 2021 · Zbl 1466.81039 · doi:10.1007/JHEP05(2021)169
[88] Cavaglià, A.; Gromov, N.; Levkovich-Maslyuk, F., Separation of variables in AdS/CFT: functional approach for the fishnet CFT, JHEP, 06, 131, 2021 · Zbl 1466.81084 · doi:10.1007/JHEP06(2021)131
[89] Gromov, N.; Primi, N.; Ryan, P., Form-factors and complete basis of observables via separation of variables for higher rank spin chains, JHEP, 11, 039, 2022 · Zbl 1536.81085 · doi:10.1007/JHEP11(2022)039
[90] C. Bercini, A. Homrich and P. Vieira, Structure Constants in \(\mathcal{N} = 4\) SYM and Separation of Variables, arXiv:2210.04923 [INSPIRE].
[91] N. Gromov, Introduction to the Spectrum of N = 4 SYM and the Quantum Spectral Curve, arXiv:1708.03648 [INSPIRE].
[92] Gubser, SS; Klebanov, IR; Polyakov, AM, Gauge theory correlators from noncritical string theory, Phys. Lett. B, 428, 105, 1998 · Zbl 1355.81126 · doi:10.1016/S0370-2693(98)00377-3
[93] Roiban, R.; Tseytlin, AA, Quantum strings in AdS_5 × S^5: Strong-coupling corrections to dimension of Konishi operator, JHEP, 11, 013, 2009 · doi:10.1088/1126-6708/2009/11/013
[94] Tseytlin, AA, Quantum strings in AdS_5 × S^5and AdS/CFT duality, Int. J. Mod. Phys. A, 25, 319, 2010 · Zbl 1184.81113 · doi:10.1142/S0217751X10048640
[95] S. Frolov, Konishi operator at intermediate coupling, J. Phys. A44 (2011) 065401 [arXiv:1006.5032] [INSPIRE]. · Zbl 1208.81160
[96] Passerini, F.; Plefka, J.; Semenoff, GW; Young, D., On the Spectrum of the AdS_5 × S^5String at large λ, JHEP, 03, 046, 2011 · Zbl 1301.81239 · doi:10.1007/JHEP03(2011)046
[97] Alday, LF; Hansen, T.; Silva, JA, On the spectrum and structure constants of short operators in N = 4 SYM at strong coupling, JHEP, 08, 214, 2023 · Zbl 07749089 · doi:10.1007/JHEP08(2023)214
[98] Bianchi, M.; Morales, JF; Samtleben, H., On stringy AdS_5 × S^5and higher spin holography, JHEP, 07, 062, 2003 · doi:10.1088/1126-6708/2003/07/062
[99] L.F. Alday, T. Hansen and J.A. Silva, Private communication.
[100] Cordova, C.; Dumitrescu, TT; Intriligator, K., Multiplets of Superconformal Symmetry in Diverse Dimensions, JHEP, 03, 163, 2019 · Zbl 1414.81233 · doi:10.1007/JHEP03(2019)163
[101] Dolan, FA; Osborn, H., Superconformal symmetry, correlation functions and the operator product expansion, Nucl. Phys. B, 629, 3, 2002 · Zbl 1039.81551 · doi:10.1016/S0550-3213(02)00096-2
[102] Dolan, FA; Osborn, H., Conformal partial waves and the operator product expansion, Nucl. Phys. B, 678, 491, 2004 · Zbl 1097.81735 · doi:10.1016/j.nuclphysb.2003.11.016
[103] Chew, GF; Frautschi, SC, Regge Trajectories and the Principle of Maximum Strength for Strong Interactions, Phys. Rev. Lett., 8, 41, 1962 · doi:10.1103/PhysRevLett.8.41
[104] Alday, LF; Hansen, T., The AdS Virasoro-Shapiro amplitude, JHEP, 10, 023, 2023 · Zbl 07774628 · doi:10.1007/JHEP10(2023)023
[105] S.M. Chester, R. Dempsey and S.S. Pufu, Bootstrapping \(\mathcal{N} = 4\) super-Yang-Mills on the conformal manifold, JHEP01 (2023) 038 [arXiv:2111.07989] [INSPIRE]. · Zbl 1540.81148
[106] H. Paul, E. Perlmutter and H. Raj, Integrated correlators in \(\mathcal{N} = 4\) SYM via SL(2, ℤ) spectral theory, JHEP01 (2023) 149 [arXiv:2209.06639] [INSPIRE].
[107] L.D. Faddeev, How algebraic Bethe ansatz works for integrable model, in the proceedings of the Les Houches School of Physics: Astrophysical Sources of Gravitational Radiation, Les Houches, France, September 26 - October 06 (1995) [hep-th/9605187] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.