×

Asymptotics for isotropic Hilbert-valued spherical random fields. (English) Zbl 07874398

Summary: In this paper, we introduce the concept of isotropic Hilbert-valued spherical random field, thus extending the notion of isotropic spherical random field to an infinite-dimensional setting. We then establish a spectral representation theorem and a functional Schoenberg’s theorem. Following some key results established for the real-valued case, we prove consistency and quantitative central limit theorem for the sample power spectrum operators in the high-frequency regime.

MSC:

60G60 Random fields
60F05 Central limit and other weak theorems
62M15 Inference from stochastic processes and spectral analysis

References:

[1] Berg, C. and Porcu, E. (2017). From Schoenberg coefficients to Schoenberg functions. Constr. Approx. 45 217-241. 10.1007/s00365-016-9323-9 MathSciNet: MR3619442 · Zbl 1362.43004
[2] Bourguin, S. and Campese, S. (2020). Approximation of Hilbert-valued Gaussians on Dirichlet structures. Electron. J. Probab. 25 1-30. 10.1214/20-ejp551 MathSciNet: MR4193891 · Zbl 1480.46057
[3] Brockwell, P.J. and Davis, R.A. (1991). Time Series: Theory and Methods, 2nd ed. Springer Series in Statistics. New York: Springer. 10.1007/978-1-4419-0320-4 MathSciNet: MR1093459 · Zbl 0709.62080
[4] Cammarota, V. and Marinucci, D. (2018). A quantitative central limit theorem for the Euler-Poincaré characteristic of random spherical eigenfunctions. Ann. Probab. 46 3188-3228. 10.1214/17-AOP1245 MathSciNet: MR3857854 · Zbl 1428.60067
[5] Caponera, A. (2021). SPHARMA approximations for stationary functional time series on the sphere. Stat. Inference Stoch. Process. 24 609-634. 10.1007/s11203-021-09244-6 MathSciNet: MR4321852 · Zbl 1477.62396
[6] Caponera, A., Durastanti, C. and Vidotto, A. (2021). LASSO estimation for spherical autoregressive processes. Stochastic Process. Appl. 137 167-199. 10.1016/j.spa.2021.03.009 MathSciNet: MR4244190 · Zbl 1467.62126
[7] Caponera, A., Fageot, J., Simeoni, M. and Panaretos, V.M. (2022). Functional estimation of anisotropic covariance and autocovariance operators on the sphere. Electron. J. Stat. 16 5080-5148. 10.1214/22-ejs2064 MathSciNet: MR4492081 · Zbl 07603104
[8] Caponera, A. and Marinucci, D. (2021). Asymptotics for spherical functional autoregressions. Ann. Statist. 49 346-369. 10.1214/20-AOS1959 MathSciNet: MR4206681 · Zbl 1461.62237
[9] Caramellino, L., Giorgio, G. and Rossi, M. (2022). Convergence in Total Variation for nonlinear functionals of random hyperspherical harmonics. Available at arXiv:2206.02605.
[10] Dick, J., Remazeilles, M. and Delabrouille, J. (2010). Impact of calibration errors on CMB component separation using FastICA and ILC. Mon. Not. R. Astron. Soc. 401 1602-1612. 10.1111/j.1365-2966.2009.15798.x
[11] Gneiting, T. (2013). Strictly and non-strictly positive definite functions on spheres. Bernoulli 19 1327-1349. 10.3150/12-BEJSP06 MathSciNet: MR3102554 zbMATH: 1283.62200 · Zbl 1283.62200
[12] Hsing, T. and Eubank, R. (2015). Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators. Wiley Series in Probability and Statistics. Chichester: Wiley. 10.1002/9781118762547 MathSciNet: MR3379106 · Zbl 1338.62009
[13] Lang, A. and Schwab, C. (2015). Isotropic Gaussian random fields on the sphere: Regularity, fast simulation and stochastic partial differential equations. Ann. Appl. Probab. 25 3047-3094. 10.1214/14-AAP1067 MathSciNet: MR3404631 · Zbl 1328.60126
[14] Marinucci, D. and Peccati, G. (2010). Ergodicity and Gaussianity for spherical random fields. J. Math. Phys. 51 043301. 10.1063/1.3329423 MathSciNet: MR2662485 · Zbl 1310.37022
[15] Marinucci, D. and Peccati, G. (2011). Random Fields on the Sphere: Representation, Limit Theorems and Cosmological Applications. London Mathematical Society Lecture Note Series 389. Cambridge: Cambridge Univ. Press. 10.1017/CBO9780511751677 MathSciNet: MR2840154 · Zbl 1260.60004
[16] Marinucci, D. and Peccati, G. (2013). Mean-square continuity on homogeneous spaces of compact groups. Electron. Commun. Probab. 18 1-10. 10.1214/ECP.v18-2400 MathSciNet: MR3064996 · Zbl 1329.60139
[17] Marinucci, D. and Rossi, M. (2015). Stein-Malliavin approximations for nonlinear functionals of random eigenfunctions on \(\mathbb{S}^d\). J. Funct. Anal. 268 2379-2420. 10.1016/j.jfa.2015.02.004 MathSciNet: MR3318653 · Zbl 1333.60033
[18] Marinucci, D., Rossi, M. and Wigman, I. (2020). The asymptotic equivalence of the sample trispectrum and the nodal length for random spherical harmonics. Ann. Inst. Henri Poincaré Probab. Stat. 56 374-390. 10.1214/19-AIHP964 MathSciNet: MR4058991 · Zbl 1465.60044
[19] Marinucci, D. and Wigman, I. (2011). The defect variance of random spherical harmonics. J. Phys. A 44 355206. 10.1088/1751-8113/44/35/355206 · Zbl 1232.60039
[20] Marinucci, D. and Wigman, I. (2014). On nonlinear functionals of random spherical eigenfunctions. Comm. Math. Phys. 327 849-872. 10.1007/s00220-014-1939-7 MathSciNet: MR3192051 · Zbl 1322.60030
[21] Nourdin, I. and Peccati, G. (2012). Normal Approximations with Malliavin Calculus: From Stein’s Method to Universality. Cambridge Tracts in Mathematics 192. Cambridge: Cambridge Univ. Press. 10.1017/CBO9781139084659 zbMATH: 1266.60001 MathSciNet: MR2962301 · Zbl 1266.60001
[22] Panaretos, V.M. and Tavakoli, S. (2013). Fourier analysis of stationary time series in function space. Ann. Statist. 41 568-603. 10.1214/13-AOS1086 zbMATH: 1267.62094 MathSciNet: MR3099114 · Zbl 1267.62094
[23] Panaretos, V.M. and Tavakoli, S. (2013). Cramér-Karhunen-Loève representation and harmonic principal component analysis of functional time series. Stochastic Process. Appl. 123 2779-2807. 10.1016/j.spa.2013.03.015 MathSciNet: MR3054545 · Zbl 1285.62109
[24] Porcu, E., Furrer, R. and Nychka, D. (2020). 30 years of space-time covariance functions. Wiley Interdiscip. Rev.: Comput. Stat. e1512. 10.1002/wics.1512 MathSciNet: MR4218945 · Zbl 07910735
[25] Rossi, M. (2019). The defect of random hyperspherical harmonics. J. Theoret. Probab. 32 2135-2165. 10.1007/s10959-018-0849-6 MathSciNet: MR4020703 · Zbl 1480.60139
[26] Schoenberg, I.J. (1942). Positive definite functions on spheres. Duke Math. J. 9 96-108. 10.1215/S0012-7094-42-00908-6 MathSciNet: MR0005922 · Zbl 0063.06808
[27] Szegö, G. (1975). Orthogonal Polynomials, 4th ed. American Mathematical Society Colloquium Publications 23. Providence: Amer. Math. Soc. 10.1090/coll/023 MathSciNet: MR0106295 · Zbl 0305.42011
[28] Todino, A.P. (2019). A quantitative central limit theorem for the excursion area of random spherical harmonics over subdomains of \(\mathbb{S}^2\). J. Math. Phys. 60 023505. 10.1063/1.5048976 MathSciNet: MR3916834 · Zbl 1481.60061
[29] Todino, A.P. (2020). Nodal lengths in shrinking domains for random eigenfunctions on \(S^2\). Bernoulli 26 3081-3110. 10.3150/20-BEJ1216 MathSciNet: MR4140538 · Zbl 1507.60069
[30] Trübner, M. and Ziegel, J.F. (2017). Derivatives of isotropic positive definite functions on spheres. Proc. Amer. Math. Soc. 145 3017-3031. 10.1090/proc/13561 MathSciNet: MR3637950 · Zbl 1365.43004
[31] Ziegel, J. (2014). Convolution roots and differentiability of isotropic positive definite functions on spheres. Proc. Amer. Math. Soc. 142 2063-2077. 10.1090/S0002-9939-2014-11989-7 MathSciNet: MR3182025 · Zbl 1305.42004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.