×

The defect of random hyperspherical harmonics. (English) Zbl 1480.60139

Summary: Random hyperspherical harmonics are Gaussian Laplace eigenfunctions on the unit \(d\)-sphere \((d\geq 2)\). We investigate the distribution of their defect, i.e., the difference between the measure of positive and negative regions. Marinucci and Wigman studied the two-dimensional case giving the asymptotic variance [D. Marinucci and I. Wigman, J. Phys. A, Math. Theor. 44, No. 35, Article ID 355206, 16 p. (2011; Zbl 1232.60039)] and a central limit theorem [D. Marinucci and I. Wigman, Commun. Math. Phys. 327, No. 3, 849–872 (2014; Zbl 1322.60030)], both in the high-energy limit. Our main results concern asymptotics for the defect variance and quantitative CLTs in Wasserstein distance, in any dimension. The proofs are based on Wiener-Itô chaos expansions for the defect, a careful use of asymptotic results for all order moments of Gegenbauer polynomials and Stein-Malliavin approximation techniques by I. Nourdin and G. Peccati [Probab. Theory Relat. Fields 145, No. 1–2, 75–118 (2009; Zbl 1175.60053); Normal approximations with Malliavin calculus. From Stein’s method to universality. Cambridge: Cambridge University Press (2012; Zbl 1266.60001)]. Our argument requires some novel technical results of independent interest that involve integrals of the product of three hyperspherical harmonics.

MSC:

60G60 Random fields
42C10 Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.)
60D05 Geometric probability and stochastic geometry
60B10 Convergence of probability measures
43A75 Harmonic analysis on specific compact groups

References:

[1] Adler, R.J., Taylor, J.E.: Random Fields and Geometry. Springer Monographs in Mathematics. Springer, New York (2007) · Zbl 1149.60003
[2] Andrews, G.E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and its Applications, vol. 71. Cambridge University Press, Cambridge (1999) · Zbl 0920.33001 · doi:10.1017/CBO9781107325937
[3] Benatar, J., Marinucci, D., Wigman, I.: Planck-scale distribution of nodal length of arithmetic random waves. arXiv:1710.06153 · Zbl 1458.81020
[4] Berry, M.V.: Regular and irregular semiclassical wavefunctions. J. Phys. A: Math. Theor. 10(12), 2083-2091 (1977) · Zbl 0377.70014 · doi:10.1088/0305-4470/10/12/016
[5] Berry, M.V.: Statistics of nodal lines and points in chaotic quantum billiards: perimeter corrections, fluctuations, curvature. J. Phys. A: Math. Gen. 35(13), 3025-3038 (2002) · Zbl 1044.81047 · doi:10.1088/0305-4470/35/13/301
[6] Brüning, J., Gromes, D.: Über die Länge der Knotenlinien schwingender Membranen. Math. Z. 124, 79-82 (1972) · Zbl 0226.35078 · doi:10.1007/BF01142586
[7] Brüning, J.: Über Knoten von Eigenfunktionen des Laplace-Beltrami-Operators. Math. Z. 158(1), 15-21 (1978) · Zbl 0349.58012 · doi:10.1007/BF01214561
[8] Cammarota, V., Marinucci, D.: On the limiting behaviour of needlets polyspectra. Annales de l’Institut Henri Poincaré Probabilités et Statistiques 51(3), 1159-1189 (2015) · Zbl 1325.60014 · doi:10.1214/14-AIHP609
[9] Cammarota, V., Marinucci, D.: A quantitative central limit theorem for the Euler-Poincaré characteristic of random spherical eigenfunctions. Ann. Prob. (in press) · Zbl 1428.60067
[10] Cammarota, V., Marinucci, D., Wigman, I.: Fluctuations of the Euler-Poincaré characteristic for random spherical harmonics. Proc. Am. Math. Soc. 144(11), 4759-4775 (2016) · Zbl 1351.60061 · doi:10.1090/proc/13299
[11] Donnelly, H., Fefferman, C.: Nodal sets of eigenfunctions on Riemannian manifolds. Invent. Math. 93(1), 161-183 (1988) · Zbl 0659.58047 · doi:10.1007/BF01393691
[12] Durastanti, C.: Adaptive global thresholding on the sphere. J. Multivar. Anal. 151, 110-132 (2016) · Zbl 1346.62074 · doi:10.1016/j.jmva.2016.07.009
[13] Faraut, J.: Analysis on Lie groups. Cambridge Studies in Advanced Mathematics, vol. 110. Cambridge University Press, Cambridge (2008). An introduction · Zbl 1147.22001 · doi:10.1017/CBO9780511755170
[14] Ghosh, A., Reznikov, A., Sarnak, P.: Nodal domains of Maass forms I. Geom. Funct. Anal. 23(5), 1515-1568 (2013) · Zbl 1328.11044 · doi:10.1007/s00039-013-0237-4
[15] Jung, J., Zelditch, S.: Number of nodal domains of eigenfunctions on non-positively curved surfaces with concave boundary. Math. Ann. 364(3-4), 813-840 (2016) · Zbl 1339.53035 · doi:10.1007/s00208-015-1236-6
[16] Krishnapur, M., Kurlberg, P., Wigman, I.: Nodal length fluctuations for arithmetic random waves. Ann. Math. (2) 177(2), 699-737 (2013) · Zbl 1314.60101 · doi:10.4007/annals.2013.177.2.8
[17] Marinucci, D.: High-resolution asymptotics for the angular bispectrum of spherical random fields. Ann. Stat. 34(1), 1-41 (2006) · Zbl 1104.60020 · doi:10.1214/009053605000000903
[18] Marinucci, D.: A central limit theorem and higher order results for the angular bispectrum. Probab. Theory Relat. Fields 141(3-4), 389-409 (2008) · Zbl 1141.60028 · doi:10.1007/s00440-007-0088-8
[19] Marinucci, D., Peccati, G.: Random Fields on the Sphere. London Mathematical Society Lecture Note Series, vol. 389. Cambridge University Press, Cambridge (2011) · Zbl 1260.60004 · doi:10.1017/CBO9780511751677
[20] Marinucci, D., Peccati, G., Rossi, M., Wigman, I.: Non-Universality of nodal lengths distribution for arithmetic random waves. Geom. Funct. Anal. 26(3), 926-960 (2016) · Zbl 1347.60013 · doi:10.1007/s00039-016-0376-5
[21] Marinucci, D., Rossi, M.: Stein-Malliavin approximations for nonlinear functionals of random eigenfunctions on \[\mathbb{S}^d\] Sd. J. Funct. Anal. 268(8), 2379-2420 (2015) · Zbl 1333.60033 · doi:10.1016/j.jfa.2015.02.004
[22] Marinucci, D., Rossi, M., Wigman, I.: The asymptotic equivalence of the sample trispectrum and the nodal length for random spherical harmonics. arXiv:1705.05747 · Zbl 1465.60044
[23] Marinucci, D., Wigman, I.: The defect variance of random spherical harmonics. J. Phys. A: Math. Theor. 44, 355206 (2011) · Zbl 1232.60039 · doi:10.1088/1751-8113/44/35/355206
[24] Marinucci, D., Wigman, I.: On nonlinear functionals of random spherical eigenfunctions. Commun. Math. Phys. 327(3), 849-872 (2014) · Zbl 1322.60030 · doi:10.1007/s00220-014-1939-7
[25] Meckes, E.: On the approximate normality of eigenfunctions of the Laplacian. Trans. Am. Math. Soc. 361(10), 5377-5399 (2009) · Zbl 1176.58015 · doi:10.1090/S0002-9947-09-04661-3
[26] Nazarov, F., Sodin, M.: On the number of nodal domains of random spherical harmonics. Am. J. Math. 131(5), 1337-1357 (2009) · Zbl 1186.60022 · doi:10.1353/ajm.0.0070
[27] Nourdin, I., Peccati, G.: Stein’s method on Wiener chaos. Probab. Theory Relat. Fields 145(1-2), 75-118 (2009) · Zbl 1175.60053 · doi:10.1007/s00440-008-0162-x
[28] Nourdin, I., Peccati, G.: Normal Approximations with Malliavin Calculus. Cambridge Tracts in Mathematics, vol. 192. Cambridge University Press, Cambridge (2012) · Zbl 1266.60001 · doi:10.1017/CBO9781139084659
[29] Peccati, Giovanni; Tudor, Ciprian A., Gaussian Limits for Vector-valued Multiple Stochastic Integrals, 247-262 (2004), Berlin, Heidelberg · Zbl 1063.60027
[30] Peccati, G., Taqqu, M.S.: Wiener Chaos: Moments, Cumulants and Diagrams. Bocconi & Springer Series, vol. 1. Springer, Bocconi University Press, Milan (2011) · Zbl 1231.60003 · doi:10.1007/978-88-470-1679-8
[31] Pham, V.-H.: On the rate of convergence for central limit theorems of sojourn times of Gaussian fields. Stoch. Process. Appl. 123(6), 2158-2174 (2013) · Zbl 1302.60050 · doi:10.1016/j.spa.2013.01.016
[32] Rossi, M.: The geometry of spherical random fields. Ph.D. thesis. University of Rome Tor Vergata (2015). arXiv:1603.07575
[33] Rudnick, Z., Wigman, I.: On the volume of nodal sets for eigenfunctions of the Laplacian on the torus. Ann. Henri Poincaré 9(1), 109-130 (2008) · Zbl 1142.60029 · doi:10.1007/s00023-007-0352-6
[34] Szegő, G.: Orthogonal polynomials, vol. XXIII, 4th edn. American Mathematical Society, Providence, RI (1975) · Zbl 0305.42011
[35] Vilenkin, N.J., Klimyk, A.U.: Representation of Lie groups and special functions. Volume 74 of Mathematics and its Applications (Soviet Series), vol. 2. Kluwer Academic Publishers Group, Dordrecht (1993) · Zbl 0809.22001 · doi:10.1007/978-94-017-2883-6
[36] Varshalovich, D.A., Moskalev, A.N., Khersonskiĭ, V.K.: Quantum Theory of Angular Momentum. World Scientific Publishing Co. Inc., Teaneck (1988) · doi:10.1142/0270
[37] Wigman, I.: Fluctuations of the nodal length of random spherical harmonics. Commun. Math. Phys. 298(3), 787-831 (2010) · Zbl 1213.33019 · doi:10.1007/s00220-010-1078-8
[38] Wigman, I.: On the Nodal Lines of Random and Deterministic Laplace Eigenfunctions. Spectral geometry, Volume 84 of Proceedings of the International Conference on Spectral Geometry, Dartmouth College, pp. 285-297. American Mathematical Society, Providence (2012) · Zbl 1317.60013
[39] Yau, S.-T.: Survey on partial differential equations in differential geometry. Seminar on Differential Geometry, Volume 102 of Annals of Mathematical Studies, pp. 3-71. Princeton University Press, Princeton (1982) · Zbl 0471.00020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.