×

A Nekhoroshev theorem for some perturbations of the Benjamin-Ono equation with initial data close to finite gap tori. (English) Zbl 07873282

Summary: We consider a perturbation of the Benjamin Ono equation with periodic boundary conditions on a segment. We consider the case where the perturbation is Hamiltonian and the corresponding Hamiltonian vector field is analytic as a map from the energy space to itself. Let \(\epsilon\) be the size of the perturbation. We prove that for initial data close in energy norm to an \(N\)-gap state of the unperturbed equation all the actions of the Benjamin Ono equation remain \({\mathcal{O}}(\epsilon^{\frac{1}{2(N+1)}})\) close to their initial value for times exponentially long with \(\epsilon^{-\frac{1}{2(N+1)}} \).

MSC:

37K55 Perturbations, KAM theory for infinite-dimensional Hamiltonian and Lagrangian systems
35Q51 Soliton equations
35B20 Perturbations in context of PDEs

References:

[1] Bambusi, D., Nekhoroshev theorem for small amplitude solutions in nonlinear Schrödinger equation, Math. Z., 130, 345-387, 1999 · Zbl 0928.35160 · doi:10.1007/PL00004696
[2] Bambusi, D., Birkhoff normal form for some nonlinear PDEs, Commun. Math. Phys., 234, 253-283, 2003 · Zbl 1032.37051 · doi:10.1007/s00220-002-0774-4
[3] Bambusi, D.; Giorgilli, A., Exponential stability of states close to resonance in infinite-dimensional Hamiltonian systems, J. Stat. Phys., 71, 3-4, 569-606, 1993 · Zbl 0943.82549 · doi:10.1007/BF01058438
[4] Bambusi, D.; Grébert, B., Birkhoff normal form for partial differential equations with tame modulus, Duke Math. J., 135, 3, 507-567, 2006 · Zbl 1110.37057 · doi:10.1215/S0012-7094-06-13534-2
[5] Bambusi, D.; Delort, J-M; Grébert, B.; Szeftel, J., Almost global existence for Hamiltonian semilinear Klein-Gordon equations with small Cauchy data on Zoll manifolds, Commun. Pure Appl. Math., 60, 11, 1665-1690, 2007 · Zbl 1170.35481 · doi:10.1002/cpa.20181
[6] Bambusi, D.; Feola, R.; Montalto, R., Almost global existence for some Hamiltonian PDEs with small Cauchy data on general tori, Commun. Math. Phys., 405, 1, 50, 2024 · Zbl 1537.35319 · doi:10.1007/s00220-023-04899-z
[7] Bernier, J.; Grébert, B., Long time dynamics for generalized Korteweg-de Vries and Benjamin-Ono equations, Arch. Ration. Mech. Anal., 241, 3, 1139-1241, 2021 · Zbl 1476.37083 · doi:10.1007/s00205-021-01666-z
[8] Bernier, J.; Faou, E.; Grébert, B., Rational normal forms and stability of small solutions to nonlinear Schrödinger equations, Ann. PDE, 6, 2, 65, 2020 · Zbl 1475.37080 · doi:10.1007/s40818-020-00089-5
[9] Bourgain, J., Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations, Geom. Funct. Anal., 6, 2, 201-230, 1996 · Zbl 0872.35007 · doi:10.1007/BF02247885
[10] Bourgain, J., On diffusion in high-dimensional Hamiltonian systems and PDE, J. Anal. Math., 80, 1-35, 2000 · Zbl 0964.35143 · doi:10.1007/BF02791532
[11] Bourgain, J.; Kaloshin, V., On diffusion in high-dimensional Hamiltonian systems, J. Funct. Anal., 229, 1, 1-61, 2005 · Zbl 1080.37062 · doi:10.1016/j.jfa.2004.09.006
[12] Gassot, L., Long time behavior of solutions for a damped Benjamin-Ono equation, Math. Z., 300, 2, 1939-2006, 2022 · Zbl 1489.37087 · doi:10.1007/s00209-021-02849-w
[13] Gérard, P., Kappeler, T., Topalov, P.: On the analyticity of the nonlinear Fourier transform of the Benjamin-Ono equation on \(\mathbb{T} (2021)\). arXiv:2109.08988
[14] Gérard, P.; Kappeler, T., On the integrability of the Benjamin-Ono equation on the torus, Commun. Pure Appl. Math., 74, 8, 1685-1747, 2021 · Zbl 1471.35354 · doi:10.1002/cpa.21896
[15] Gérard, P.; Kappeler, T.; Topalov, P., On the spectrum of the Lax operator of the Benjamin-Ono equation on the torus, J. Funct. Anal., 279, 12, 75, 2020 · Zbl 1452.37070 · doi:10.1016/j.jfa.2020.108762
[16] Gérard, P.; Kappeler, T.; Topalov, P., On the analytic Birkhoff normal form of the Benjamin-Ono equation and applications, Nonlinear Anal., 216, 32, 2022 · Zbl 1521.37085 · doi:10.1016/j.na.2021.112687
[17] Gérard, P.; Kappeler, T.; Topalov, P., On the Benjamin-Ono equation on \(\mathbb{T}\) and its periodic and quasiperiodic solutions, J. Spectr. Theory, 12, 1, 169-193, 2022 · Zbl 1495.37060 · doi:10.4171/jst/398
[18] Gérard, P.; Kappeler, T.; Topalov, P., Sharp well-posedness results of the Benjamin-Ono equation in \(H^s(\mathbb{T},\mathbb{R} )\) and qualitative properties of its, Acta Math., 231, 1, 31-88, 2023 · Zbl 1533.35061 · doi:10.4310/ACTA.2023.v231.n1.a2
[19] Kappeler, T.; Montalto, R., On the stability of periodic multi-solitons of the KdV equation, Commun. Math. Phys., 385, 3, 1871-1956, 2021 · Zbl 1475.35304 · doi:10.1007/s00220-021-04089-9
[20] Lochak, P., Canonical perturbation theory via simultaneous approximation, Russ. Math. Surv., 47, 6, 57-133, 1992 · Zbl 0795.58042 · doi:10.1070/RM1992v047n06ABEH000965
[21] Lochak, P.; Neĭshtadt, AI, Estimates of stability time for nearly integrable systems with a quasiconvex Hamiltonian, Chaos, 2, 4, 495-499, 1992 · Zbl 1055.37573 · doi:10.1063/1.165891
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.