×

On the stability of periodic multi-solitons of the KdV equation. (English) Zbl 1475.35304

Summary: In this paper we obtain the following stability result for periodic multi-solitons of the KdV equation: We prove that under any given semilinear Hamiltonian perturbation of small size \(\varepsilon > 0\), a large class of periodic multi-solitons of the KdV equation, including ones of large amplitude, are orbitally stable for a time interval of length at least \(O(\varepsilon^{-2})\). To the best of our knowledge, this is the first stability result of such type for periodic multi-solitons of large size of an integrable PDE.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35C08 Soliton solutions
35B35 Stability in context of PDEs
35B09 Positive solutions to PDEs
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)

References:

[1] Baldi, P.; Berti, M.; Montalto, R., KAM for autonomous quasi-linear perturbations of KdV, Ann. Inst. H. Poincaré Analyse Non Linéaire, 33, 6, 1589-1638 (2016) · Zbl 1370.37134 · doi:10.1016/j.anihpc.2015.07.003
[2] Bambusi, D., Nekhoroshev theoem for small amplitude solutions in nonlinear Schrödinger equations, Math. Z., 130, 345-387 (1999) · Zbl 0928.35160 · doi:10.1007/PL00004696
[3] Bambusi, D., Birkhoff normal form for some nonlinear PDEs, Commun. Math. Phys., 234, 2, 253-285 (2003) · Zbl 1032.37051 · doi:10.1007/s00220-002-0774-4
[4] Bambusi, D.; Grébert, B., Birkhoff normal form for partial differential equations with tame modulus, Duke Math. J., 135, 3, 507-567 (2006) · Zbl 1110.37057 · doi:10.1215/S0012-7094-06-13534-2
[5] Bernier, J., Faou, E., Grébert, G.: Rational normal forms and stability of small solutions to nonlinear Schrödinger equations, arXiv:1812.11414 (2020) · Zbl 1441.35169
[6] Bernier, J., Grébert, B.: Long time dynamics for generalized Korteweg-de Vries and Benjamin-Ono equations, arXiv:2006.04397 (2020)
[7] Berti, M., Delort, J.: Almost global solutions of capillary-gravity water waves equations on the circle. Lecture Notes of the Unione Matematica Italiana, 24, Springer (2018) · Zbl 1409.35002
[8] Berti, M.; Kappeler, T.; Montalto, R., Large KAM tori for quasi-linear perturbations of KdV, Arch. Ration. Mech. Anal., 239, 1395-1500 (2021) · Zbl 1462.35329 · doi:10.1007/s00205-020-01596-2
[9] Berti, M., Montalto, R.: Quasi-periodic standing wave solutions for gravity-capillary water waves, Memoirs of the Amer. Math. Society, Vol. 263, Number 1273 (2020) · Zbl 1443.76001
[10] Biasco, L.; Coglitore, F., Periodic orbits accumulating onto elliptic tori for the \((N+1)\)-body problem, Celest. Mech. Dyn. Astronom., 101, 4, 349-373 (2008) · Zbl 1154.37361 · doi:10.1007/s10569-008-9154-5
[11] Bikbaev, R.; Kuksin, S., On the parametrization of finite-gap solutions by frequency vector and wave number vectors and a theorem by I. Krichever, Lett. Math. Phys., 28, 115-122 (1993) · Zbl 0774.35070 · doi:10.1007/BF00750304
[12] Bourgain, J., Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations, Ann. Math., 148, 363-439 (1998) · Zbl 0928.35161 · doi:10.2307/121001
[13] Bourgain, J., On diffusion in high dimensional Hamiltonian systems and PDE, J. Anal. Math., 80, 1-35 (2000) · Zbl 0964.35143 · doi:10.1007/BF02791532
[14] Boussinesq, J., Théorie de l’intumescence liquid appelée onde solitaire ou de translation, se propageant dans un canal rectangulaire, C. R. Acad. Sci. (Paris), 72, 755-759 (1871) · JFM 03.0486.01
[15] Chierchia, L.; You, J., KAM tori for 1D nonlinear wave equations with periodic boundary conditions, Commun. Math. Phys., 211, 2, 487-525 (2000) · Zbl 0956.37054 · doi:10.1007/s002200050824
[16] Colliander, J.; Keel, M.; Staffilani, G.; Takaoka, H.; Tao, T., Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation, Invent. Math., 181, 1, 3-113 (2010) · Zbl 1197.35265 · doi:10.1007/s00222-010-0242-2
[17] Cong, H.; Liu, J.; Shi, Y.; Yuan, X., The stability of full dimensional KAM tori for nonlinear Schrödinger equation, J. Differ. Equ., 264, 7, 4504-4563 (2018) · Zbl 1382.37079 · doi:10.1016/j.jde.2017.12.013
[18] Delort, J.-M.: A quasi-linear Birkhoff normal forms method. Application to the quasi-linear Klein-Gordon equation on \({\mathbb{S}}^1\), Astérisque No. 341 (2012) · Zbl 1243.35123
[19] Dispersive Wiki, http://wiki.math.toronto.edu/DispersiveWiki/
[20] Dubrovin, B., Krichever, I., Novikov, S.: Integrable systems I. In: Arnold, V., Novikov, S. (eds.) Dynamical Systems IV, Encyclopedia of Mathematical Sciences vol. 4, pp. 173-280. Springer (1990) · Zbl 0778.00008
[21] Euler, L., Elements of Algebra (1822), London: Longmans, London
[22] Faddev, L.; Takhtajan, L., Hamiltonian Methods in the Theory of Solitons (1987), Berlin: Springer, Berlin · Zbl 1111.37001 · doi:10.1007/978-3-540-69969-9
[23] Feola, R., Iandoli, F.: A non-linear Egorov theorem and Poincaré-Birkhoff normal forms for quasi-linear pdes on the circle, arXiv:2002.12448 (2020) · Zbl 1430.35207
[24] Gardner, C.; Greene, J.; Kruskal, M.; Miura, R., Korteweg-de Vries equation and generalizations.VI. Methods for exact solution, Commun. Pure Appl. Math., 27, 97-133 (1974) · Zbl 0291.35012 · doi:10.1002/cpa.3160270108
[25] Guardia, M.; Hani, Z.; Haus, E.; Maspero, A.; Procesi, M., A note on growth of Sobolev norms near quasiperiodic finite-gap tori for the 2D cubic NLS equation, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 30, 4, 865-880 (2019) · Zbl 1427.35254 · doi:10.4171/RLM/873
[26] Kappeler, T.; Molnar, J., On the wellposedness of the KdV/KdV2 equations and their frequency maps, Ann. Inst. H. Poincaré Analyse Non Linéaire, 35, 1, 101-160 (2018) · Zbl 1406.37050 · doi:10.1016/j.anihpc.2017.03.003
[27] Kappeler, T.; Montalto, R., Normal form coordinates for the KdV equation having expansions in terms of pseudodifferential operators, Commun. Math. Phys., 375, 833-913 (2020) · Zbl 1443.37055 · doi:10.1007/s00220-019-03498-1
[28] Kappeler, T.; Pöschel, J., KdV & KAM (2003), Berlin: Springer-Verlag, Berlin · Zbl 1032.37001 · doi:10.1007/978-3-662-08054-2
[29] Korteweg, D.; de Vries, G., On the change of form of long waves advancing in rectangular canal, and on a new type of long stationary waves, Philos. Mag. Ser. 5, 39, 422-443 (1895) · JFM 26.0881.02 · doi:10.1080/14786449508620739
[30] Kruskal, M., Zabusky, N.: Interactions of ‘solitons’ in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240-243 (1965) · Zbl 1201.35174
[31] Kuksin, S., Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum, Funct. Anal. Appl., 21, 192-205 (1987) · Zbl 0716.34083 · doi:10.1007/BF02577134
[32] Kuksin, S., A KAM theorem for equations of the Korteweg-de Vries type, Rev. Math. Phys., 10, 3, 1-64 (1998) · Zbl 0920.35135
[33] Kuksin, S., Analysis of Hamiltonian PDEs (2000), Oxford: Oxford University Press, Oxford · Zbl 0960.35001
[34] Lax, P., Integrals of of nonlinear equations of evolution and solitary waves, Commun. Pure Appl. Math., 21, 468-490 (1968) · Zbl 0162.41103 · doi:10.1002/cpa.3160210503
[35] Liu, J.; Yuan, X., A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations, Commun. Math. Phys, 307, 3, 629-673 (2011) · Zbl 1247.37082 · doi:10.1007/s00220-011-1353-3
[36] Maspero, A.; Procesi, M., Long time stability of small finite gap solutions of the cubic nonlinear Schrödinger equation on \({\mathbb{T}}^2\), J. Differ. Equ., 265, 7, 3212-3309 (2018) · Zbl 1428.35529 · doi:10.1016/j.jde.2018.05.005
[37] Métivier, G.: Para-differential calculus and applications to the Cauchy problem for nonlinear systems, Publications of the Scuola Normale Superiore (Book 5), Edizioni della Normale (2008) · Zbl 1156.35002
[38] Miura, R.; Gardner, C.; Kruskal, M., Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion, J. Math. Phys., 9, 1204-1209 (1968) · Zbl 0283.35019 · doi:10.1063/1.1664701
[39] Procesi, C.; Procesi, M., A KAM algorithm for the resonant non-linear Schrödinger equation, Adv. Math., 272, 399-470 (2015) · Zbl 1312.37047 · doi:10.1016/j.aim.2014.12.004
[40] Rayleigh, L.: On waves. In: Report of the fourteenth Meeting of the British Association for the Association for the Advancement of Sciences, pp. 311-390. John Murray, London (1844)
[41] Wayne, E., Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Commun. Math. Phys., 127, 3, 479-528 (1990) · Zbl 0708.35087 · doi:10.1007/BF02104499
[42] Taylor, M.E.: Pseudo differential operators and nonlinear PDEs, Progress in Mathematics, Vol. 100. Birkhäuser, Boston (1991) · Zbl 0746.35062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.