×

Spectral representation of one-dimensional Liouville Brownian motion and Liouville Brownian excursion. (English) Zbl 07871286

This paper is mainly devoted to the spectral representation of time-changed Brownian motion and Brownian excursion. The author applied Krein’s spectral theory of linear diffusions to study spectral representation of one dimensional Liouville Brownian motion (Section 4.2) and one dimensional Liouville Brownian excursion (Section 4.3).
As an application of the spectral representation, various probabilistic asymptotic behaviours of time changed Brownian motion and Brownian excursion are given in Section 5.

MSC:

60J65 Brownian motion
60G22 Fractional processes, including fractional Brownian motion
60D05 Geometric probability and stochastic geometry
28A80 Fractals
34K08 Spectral theory of functional-differential operators

References:

[1] S. Andres and N. Kajino, Continuity and estimates of the Liouville heat kernel with applic-ations to spectral dimensions. Probab. Theory Related Fields 166 (2016), no. 3-4, 713-752 Zbl 1353.60073 MR 3568038 · Zbl 1353.60073 · doi:10.1007/s00440-015-0670-4
[2] E. Bacry and J. F. Muzy, Log-infinitely divisible multifractal processes. Comm. Math. Phys. 236 (2003), no. 3, 449-475 Zbl 1032.60046 MR 2021198 · Zbl 1032.60046 · doi:10.1007/s00220-003-0827-3
[3] M. T. Barlow and T. Kumagai, Transition density asymptotics for some diffusion processes with multi-fractal structures. Electron. J. Probab. 6 (2001), article no. 9 Zbl 0974.60061 MR 1831804 · Zbl 0974.60061 · doi:10.1214/EJP.v6-82
[4] J. Barral and B. B. Mandelbrot, Multifractal products of cylindrical pulses. Probab. Theory Related Fields 124 (2002), no. 3, 409-430 Zbl 1014.60042 MR 1939653 · Zbl 1014.60042 · doi:10.1007/s004400200220
[5] J. Barral and B. B. Mandelbrot, Non-degeneracy, moments, dimension, and multifractal analysis for random multiplicative measures (Random multiplicative multifractal meas-ures. II). In Fractal geometry and applications: a jubilee of Benoît Mandelbrot, Part 2, pp. 17-52, Proc. Sympos. Pure Math. 72, Amer. Math. Soc., Providence, RI, 2004 Zbl 1117.28007 MR 2112120 · Zbl 1117.28007 · doi:10.1090/pspum/072.2/2112120
[6] N. Berestycki, Diffusion in planar Liouville quantum gravity. Ann. Inst. Henri Poincaré Probab. Stat. 51 (2015), no. 3, 947-964 Zbl 1325.60125 MR 3365969 · Zbl 1325.60125 · doi:10.1214/14-AIHP605
[7] N. Berestycki, Introduction to the Gaussian free field and Liouville quantum gravity. Available on the author’s website, 2016
[8] N. Berestycki, An elementary approach to Gaussian multiplicative chaos. Electron. Com-mun. Probab. 22 (2017), article no. 27 Zbl 1365.60035 MR 3652040 · Zbl 1365.60035 · doi:10.1214/17-ECP58
[9] J. Bertoin, Subordinators: examples and applications. In Lectures on probability theory and statistics (Saint-Flour, 1997), pp. 1-91, Lecture Notes in Math. 1717, Springer, Berlin, 1999 Zbl 0955.60046 MR 1746300 · Zbl 0955.60046 · doi:10.1007/978-3-540-48115-7_1
[10] B. Duplantier and S. Sheffield, Liouville quantum gravity and KPZ. Invent. Math. 185 (2011), no. 2, 333-393 Zbl 1226.81241 MR 2819163 · Zbl 1226.81241 · doi:10.1007/s00222-010-0308-1
[11] H. Dym and H. P. McKean, Gaussian processes, function theory, and the inverse spec-tral problem. Probability and Mathematical Statistics, Vol. 31, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976 Zbl 0327.60029 MR 448523 · Zbl 0327.60029
[12] P. Fitzsimmons, J. Pitman, and M. Yor, Markovian bridges: construction, Palm interpret-ation, and splicing. In Seminar on Stochastic Processes, 1992 (Seattle, WA, 1992), pp. 101-134, Progr. Probab. 33, Birkhäuser Boston, Boston, MA, 1993 Zbl 0844.60054 MR 1278079 · Zbl 0844.60054 · doi:10.1007/978-1-4612-0339-1_5
[13] P. J. Fitzsimmons and K. Yano, Time change approach to generalized excursion measures, and its application to limit theorems. J. Theoret. Probab. 21 (2008), no. 1, 246-265 Zbl 1148.60054 MR 2384481 · Zbl 1148.60054 · doi:10.1007/s10959-007-0108-8
[14] C. Garban, R. Rhodes, and V. Vargas, On the heat kernel and the Dirichlet form of Liouville Brownian motion. Electron. J. Probab. 19 (2014), article no. 96 Zbl 1334.60175 MR 3272329 · Zbl 1334.60175 · doi:10.1214/ejp.v19-2950
[15] C. Garban, R. Rhodes, and V. Vargas, Liouville Brownian motion. Ann. Probab. 44 (2016), no. 4, 3076-3110 Zbl 1393.60015 MR 3531686 · Zbl 1393.60015 · doi:10.1214/15-AOP1042
[16] H. Jackson, Liouville Brownian motion and thick points of the Gaussian free field. Ann. Inst. Henri Poincaré Probab. Stat. 54 (2018), no. 1, 249-279 Zbl 1396.60089 MR 3765889 · Zbl 1396.60089 · doi:10.1214/16-AIHP803
[17] I. S. Kac and M. G. Kreȋn, Criteria for the discreteness of the spectrum of a singular string. Izv. Vysš. Učebn. Zaved. Matematika 1958 (1958), no. 2(3), 136-153 Zbl 1469.34111 MR 139804 · Zbl 1469.34111
[18] J.-P. Kahane, Sur le chaos multiplicatif. Ann. Sci. Math. Québec 9 (1985), no. 2, 105-150 Zbl 0596.60041 MR 829798 · Zbl 0596.60041
[19] S. Kotani and S. Watanabe, Kreȋn’s spectral theory of strings and generalized diffusion processes. In Functional analysis in Markov processes (Katata/Kyoto, 1981), pp. 235-259, Lecture Notes in Math. 923, Springer, Berlin-New York, 1982 Zbl 0496.60080 MR 661628 · Zbl 0496.60080 · doi:10.1007/BFb0093046
[20] O. Loukianov, D. Loukianova, and S. Song, Spectral gaps and exponential integrability of hitting times for linear diffusions. Ann. Inst. Henri Poincaré Probab. Stat. 47 (2011), no. 3, 679-698 Zbl 1233.60044 MR 2841071 · Zbl 1233.60044 · doi:10.1214/10-AIHP380
[21] B. B. Mandelbrot, A possible refinement of the lognormal hypothesis concerning the distribution of energy in intermittent turbulence. In Statistical Models and Turbulence, pp. 333-351, Lecture Notes in Physisc 12, Springer, Berlin, Heidelberg, 1972 Zbl 0227.76079 · Zbl 0227.76081 · doi:10.1007/3-540-05716-1_20
[22] D. Revuz and M. Yor, Continuous martingales and Brownian motion. Third edn., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathemat-ical Sciences] 293, Springer, Berlin, 1999 Zbl 0917.60006 MR 1725357 · Zbl 0917.60006 · doi:10.1007/978-3-662-06400-9
[23] R. Rhodes and V. Vargas, Gaussian multiplicative chaos and applications: a review. Probab. Surv. 11 (2014), 315-392 Zbl 1316.60073 MR 3274356 · Zbl 1316.60073 · doi:10.1214/13-PS218
[24] R. Rhodes and V. Vargas, Spectral dimension of Liouville quantum gravity. Ann. Henri Poincaré 15 (2014), no. 12, 2281-2298 Zbl 1305.83036 MR 3272822 · Zbl 1305.83036 · doi:10.1007/s00023-013-0308-y
[25] P. Salminen, P. Vallois, and M. Yor, On the excursion theory for linear diffusions. Jpn. J. Math. 2 (2007), no. 1, 97-127 Zbl 1160.60024 MR 2295612 · Zbl 1160.60024 · doi:10.1007/s11537-007-0662-y
[26] M. Tomisaki, On the asymptotic behaviors of transition probability densities of one-dimensional diffusion processes. Publ. Res. Inst. Math. Sci. 12 (1976/77), no. 3, 819-834 Zbl 0368.60089 MR 448589 · Zbl 0368.60089 · doi:10.2977/prims/1195190380
[27] M. Yamazato, Hitting time distributions of single points for 1-dimensional generalized diffusion processes. Nagoya Math. J. 119 (1990), 143-172 Zbl 0745.60083 MR 1071905 · Zbl 0745.60083 · doi:10.1017/S0027763000003172
[28] K. Yano, Excursion measure away from an exit boundary of one-dimensional diffusion processes. Publ. Res. Inst. Math. Sci. 42 (2006), no. 3, 837-878 Zbl 1113.60084 MR 2266999 · Zbl 1113.60084 · doi:10.2977/prims/1166642162
[29] .
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.