×

Relatively exact controllability of fractional stochastic neutral system with two incommensurate constant delays. (English) Zbl 07869387

MSC:

34K37 Functional-differential equations with fractional derivatives
26A33 Fractional derivatives and integrals
34K50 Stochastic functional-differential equations
34A08 Fractional ordinary differential equations
93B05 Controllability
Full Text: DOI

References:

[1] X.Wang, D. F.Luo, and Q. X.Zhu, Ulam‐Hyers stability of Caputo type fuzzy fractional differential equations with time‐delays, Chaos Solitions Fractals156 (2022), 111822. · Zbl 1506.34102
[2] M. Q.Tian and D. F.Luo, Existence and finite‐time stability results for impulsive Caputo‐type fractional stochastic differential equations with time delays, Math. Slovaca73 (2023), 387-406. · Zbl 1538.34314
[3] D. F.Luo, M. Q.Tian, and Q. X.Zhu, Some results on finite‐time stability of stochastic fractional‐order delay differential equations, Chaos Soliton Fract158 (2022), 111996. · Zbl 1505.93225
[4] R.Dhayal and M.Malik, Approximate controllability of fractional stochastic differential equations driven by Rosenblatt process with non‐instantaneous impulses, Chaos Soliton Fract151 (2021), 111292. · Zbl 1498.34199
[5] R.Dhayal, M.Malik, S.Abbas, and A.Debbouche, Optimal controls for second‐order stochastic differential equations driven by mixed‐fractional Brownian motion with impulses, Math. Meth. Appl. Sci.7 (2020), 4107-4124. · Zbl 1448.49034
[6] D. F.Luo, Q. X.Zhu, and Z. G.Luo, An averaging principle for stochastic fractional differential equations with time‐delays, Appl. Math. Lett.105 (2020), 106290. · Zbl 1436.34072
[7] D. F.Luo, Q. X.Zhu, and Z. G.Luo, A novel result on averaging principle of stochastic Hilfer‐type fractional system involving non‐Lipschitz coefficients, Appl. Math. Lett.122 (2021), 107549. · Zbl 1481.60114
[8] D.Baleanu, J. A. T.Machaado, and A. C.Luo, Fractional Dynamics and Control, Springer, New York, 2011.
[9] D.Baleanu, K.Diethelm, E.Scalas, and J. J.Trujillo, Fractional Calculus: Models and Numerical Methods, World Scientific, Singapore, 2012. · Zbl 1248.26011
[10] A. A.Kibas, H. M.Srivastava, and J. J.Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, London, 2006. · Zbl 1092.45003
[11] Y.Zhou, J. R.Wang, and L.Zhang, Basic Theory of Fractional Differential Equations, World Scientific, London, 2016.
[12] J.Zou, D. F.Luo, and M. M.Li, The existence and averaging principle for stochastic fractional differential equations with impulses, Math. Meth. Appl. Sci.6 (2023), 6857-6874. · Zbl 1532.34060
[13] D. F.Luo, X.Wang, T.Caraballo, and Q. X.Zhu, Ulam‐Hyers stability of Caputo‐type fractional fuzzy stochastic differential equations with delay, Commun. Nonlinear Sci. Numer. Simul.121 (2023), 107229. · Zbl 1517.34105
[14] D. F.Luo, T.Abdeljawad, and Z. G.Luo, Ulam‐Hyers stability results for a novel nonlinear Nabla Caputo fractional variable‐order difference system, Turkish J. Mat.1 (2021), 456-470. · Zbl 1506.39012
[15] J. Z.Huang and D. F.Luo, Existence and controllability for conformable fractional stochastic differential equations with infinite delay via measures of noncompactness, Chaos33 (2023), 13120. · Zbl 07880562
[16] D. F.Luo and Z. G.Luo, Existence and Hyers‐Ulam stability results for a class of fractional order delay differential equations with non‐instantaneous impulses, Math. Slovaca5 (2020), 1231-1248. · Zbl 1490.74036
[17] J.Klamka, Stochastic controllability of linear systems with state delays, Int. J. Appl. Math. Comput. Sci.1 (2007), 5-13. · Zbl 1133.93307
[18] J. Z.Huang and D. F.Luo, Relatively exact controllability of fractional stochastic delay system driven by Lévy noise, Math. Meth. Appl. Sci.9 (2023), 11188-11211. · Zbl 1538.34300
[19] J. R.Wang, T.Sathiyaraj, and D.O’Regan, Relative controllability of a stochastic system using fractional delayed sine and cosine matrices, Nonlinear Anal. Model. Control6 (2021), 1031-1051. · Zbl 1485.93081
[20] X. C.Mao and H. Y.Hu, Hopf bifurcation analysis of a four‐neuron network with multiple time delays, Nonlinear dyn.1‐2 (2009), 95-112. · Zbl 1169.92004
[21] D. Y. a.Khusainov, A. F.Ivanov, and G. V.Shuklin, On a representation of solutions of linear delay Systems, Differ. Eq.7 (2005), 1054-1058. · Zbl 1104.34046
[22] M. M.Li and J. R.Wang, Finite time stability of fractional delay differential equations, Appl. Math. Lett.64 (2017), 170-176. · Zbl 1354.34130
[23] I. T.Huseynov and N. I.Mahmudov, Analysis of positive fractional‐order neutral time‐delay systems, J. Franklin Institute1 (2022), 294-330. · Zbl 1480.93207
[24] T.Sathiyaraj, J. R.Wang, and D.O’Regan, Controllability of stochastic nonlinear oscillating delay systems driven by the Rosenblatt distribution, Proc. Roy. Soc. Edinburgh Sect. A.1 (2021), 217-239. · Zbl 1462.34104
[25] J. Z.Huang, D. F.Luo, and Q.Zhu, Relatively exact controllability for fractional stochastic delay differential equations of order
[( k\in \left(1,2\right] \]\), 2023, pp. 113404.
[26] R.Dhayal, M.Malik, and S.Abbas, Solvability and optimal controls of non‐instantaneous impulsive stochastic neutral integro‐differential equation driven by fractional Brownian motion, AIMS Math.4 (2019), no. 3, 663-683. · Zbl 1484.34179
[27] M. M.Li and J. R.Wang, Exploring delayed Mittag‐Leffler type matrix functions to study finite time stability of fractional delay differential equations, Appl. Math. Comput.324 (2018), 254-265. · Zbl 1426.34110
[28] Z. L.You, M.Fečkan, and J. R.Wang, On the relative controllability of neutral delay differential equations, J. Math. Phys.62 (2021), no. 8, 82704. · Zbl 1471.93041
[29] M.Fečkan, Y.Zhou, and J. R.Wang, On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simul.7 (2012), 3050-3060. · Zbl 1252.35277
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.