×

Analysis of positive fractional-order neutral time-delay systems. (English) Zbl 1480.93207

Summary: In this paper, we consider an initial value problem for linear matrix coefficient systems of the fractional-order neutral differential equations with two incommensurate constant delays in Caputo’s sense. Firstly, we introduce the exact analytical representation of solutions to linear homogeneous and non-homogeneous neutral fractional-order differential-difference equations system by means of newly defined delayed Mittag-Leffler type matrix functions. Secondly, a criterion on the positivity of a class of fractional-order linear homogeneous time-delay systems has been proposed. Furthermore, we prove the global existence and uniqueness of solutions to non-linear fractional neutral delay differential equations system using the contraction mapping principle in a weighted space of continuous functions with regard to classical Mittag-Leffler functions. In addition, Ulam-Hyers stability results of solutions are attained based on fixed-point approach. Finally, we present an example to demonstrate the applicability of our theoretical results.

MSC:

93C28 Positive control/observation systems
93C15 Control/observation systems governed by ordinary differential equations
26A33 Fractional derivatives and integrals
93D99 Stability of control systems
93C43 Delay control/observation systems
Full Text: DOI

References:

[1] Shen, J.; Lam, J., Stability and performance analysis for positive fractional-order systems with time-varying delays, IEEE Trans. Autom. Control, 61, 9, 2676-2681 (2016) · Zbl 1359.93403
[2] Ahmadova, A.; Huseynov, I. T.; Mahmudov, N. I., Controllability of fractional stochastic delay dynamical systems, Proc. Inst. Math. Mech. ANAS, 46, 2, 294-320 (2020) · Zbl 1466.93016
[3] Ahmadova, A.; Mahmudov, N. I., Existence and uniqueness results for a class of fractional stochastic neutral differential equations, Chaos Solitons Fractals, 139, 110253 (2020) · Zbl 1490.34094
[4] Kaczorek, T., Positive linear systems with different fractional orders, Bull. Pol. Acad. Sci. Tech. Sci., 58, 3, 453-458 (2010) · Zbl 1220.78074
[5] Mahmudov, N. I.; Huseynov, I. T.; Aliev, N. A.; Aliev, F. A., Analytical approach to a class of Bagley-Torvik equations, TWMS J. Pure Appl. Math., 11, 2, 238-258 (2020) · Zbl 1491.34016
[6] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations, 204 (2006), Elsevier Science B.V. · Zbl 1092.45003
[7] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press San Diego · Zbl 0918.34010
[8] Khusainov, D. Y.; Ivanov, A. F.; Shuklin, G. V., On a representation of solutions of linear delay systems, Differ. Eq., 41, 7, 1054-1058 (2005) · Zbl 1104.34046
[9] Li, M.; Wang, J. R., Finite time stability of fractional delay differential equations, Appl. Math. Lett., 64, 170-176 (2017) · Zbl 1354.34130
[10] Mahmudov, N. I., Delayed perturbation of Mittag-Leffler functions and their applications to fractional linear delay differential equations, Math. Methods Appl. Sci., 1-9 (2018)
[11] Huseynov, I. T.; Mahmudov, N. I., Delayed analogue of three-parameter Mittag-Leffler functions and their applications to Caputo-type fractional time delay differential equations, Math. Methods Appl. Sci., 1-25 (2020)
[12] Diblik, J.; Feckan, M.; Pospisil, M., Representation of a solution of the cauchy problem for an oscillating system with two delays and permutable matrices, Ukr. Math. J., 65, 1, 58-69 (2013) · Zbl 1283.34057
[13] Mahmudov, N. I., A novel fractional delayed matrix cosine and sine, Appl. Math. Lett., 92, 41-48 (2019) · Zbl 1416.34059
[14] Liang, C.; Wang, J. R.; O’Regan, D., Representation of a solution for a fractional linear system with pure delay, Appl. Math. Lett., 77, 72-78 (2018) · Zbl 1462.34105
[15] Morgado, M. L.; Ford, N. J.; Lima, P. M., Analysis and numerical methods for fractional differential equation with delay, Comput. Appl. Math., 252, 159-168 (2013) · Zbl 1291.65214
[16] Bhalekar, S.; Gejji, V. D., A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order, J. Fract. Calc. Appl., 5, 1-9 (2011) · Zbl 1488.65209
[17] Diblik, J.; Feckan, M.; Pospisil, M., Representation of a solution of the cauchy problem for an oscillating system with multiple delays and pairwise permutable matrices, Abstr. Appl. Anal., 931493, 10 (2013) · Zbl 1277.34093
[18] Pospisil, M.; Jaros, F., On the representation of solutions of delayed differential equations via laplace transform, Electron. J. Qual. Theory Differ. Equ., 117, 1-13 (2016) · Zbl 1399.34184
[19] Pospisil, M., Representation of solutions of systems of linear differential equations with multiple delays and nonpermutable variable coefficients, Math. Model. Anal., 25, 2, 303-322 (2020) · Zbl 1476.34143
[20] Hale, J. K.; Lunel, S. M.V., Introduction to Functional Differential Equations (1993), Springer-Verlag: Springer-Verlag New York · Zbl 0787.34002
[21] Li, Z.-Y.; Lam, J.; Wang, Y., Stability analysis of linear stochastic neutral-type time-delay systems with two delays, Automatica, 91, 179-189 (2018) · Zbl 1387.93170
[22] Li, Z.-Y.; Lam, J.; Wang, Y., On stability of neutral-type linear stochastic time-delay systems with three different delays, Appl. Math. Comput., 360, 147-166 (2019) · Zbl 1428.93119
[23] Pospisil, M.; Skripkova, L., Representation of solutions of neutral differential equations with delay and linear parts defined by pairwise permutable matrices, Miskolc Math. Notes, 16, 1, 423-438 (2015) · Zbl 1340.34228
[24] M. Pospisil, Relative controllability of neutral differential equations with a delay, SIAM J. Control Optim. 55(2) 835-855. · Zbl 1368.34093
[25] Zhang, H.; Cao, J.; Jiang, W., General solution of linear fractional neutral differential-difference equations, Discrete Dyn. Nat. Soc., 2013, 1-7 (2013) · Zbl 1417.34029
[26] Farina, L.; Rinaldi, S., Positive Linear Systems, Theory and Applications (2000), Wiley: Wiley New York, N.Y. · Zbl 0988.93002
[27] Kaczorek, T., Positive 1D and 2D Systems (2002), Springer: Springer London · Zbl 1005.68175
[28] Rami, M. A.; Helmke, U.; Tadeo, F., Positive observation problem for linear time-delay positive systems, Proceedings of the Mediterranean Conference on Control Automation, 1-6 (2007)
[29] Rami, M. A.; Helmke, U.; Tadeo, F., Positive observation problem for linear time-lag positive systems, Proceedings of the Third IFAC Symposium on System Structure and Control, Foz do Iguau, Brazil (2007)
[30] Tuan, H. T.; Trinh, H.; Lam, J., Positivity and stability of mixed fractional order systems with unbounded delays: necessary and sufficient conditions, Int. J. Robust Nonlinear Control., 31, 1, 37-50 (2021) · Zbl 1525.93332
[31] Rami, M. A., Stability analysis and synthesis for linear positive systems with time-varying delays, Positive Systems- Proceedings of the 3rd Multidisciplinary International Symposium on Positive Systems: Theory and Applications (POSTA 2009), 205-216 (2009), Springer-Verlag: Springer-Verlag Berlin Heidelberg · Zbl 1182.93051
[32] Kaczorek, T., Stability of positive continuous-time linear systems with delays, Bull. Pol. Acad. Sci. Tech. Sci., 57, 4, 395-398 (2009)
[33] Kaczorek, T., Stability tests of positive fractional continuous-time linear systems with delays, Trans. Nav. Int. J. Marine Navig. Saf. Sea Transp., 7, 2, 211-215 (2013)
[34] Abbas, S., Existence of solutions to fractional order ordinary and delay differential equations and applications, Electron. J. Differ. Equ., 9, 1-11 (2011) · Zbl 1211.34096
[35] Cong, D.; Tuan, H. T., Existence, uniqueness, and exponential boundedness of global solutions to delay fractional differential equations, Mediterr. J. Math., 14, 193, 1-12 (2017) · Zbl 1379.34071
[36] H.T. Tuan, H. Trinh, A qualitative theory of time delay nonlinear fractional-order systems, SIAM J. Control Optim. 58(3) 1491-1518. · Zbl 1450.34059
[37] Mahmudov, N. I.; Al-Khateeb, A., Existence and stability results on Hadamard type fractional time-delay semilinear differential equations, Mathematics, 8, 1242 (2020)
[38] Mahmudov, N. I., Fractional langevin type delay equations with two fractional derivatives, Appl. Math. Lett., 103, 106215 (2020) · Zbl 1444.34093
[39] Ahmadova, A.; Mahmudov, N. I., Ulam-hyers stability of Caputo type stochastic neutral differential equations, Stat. Probab. Lett., 168, 108949 (2021) · Zbl 1458.34011
[40] Liu, L.; Dong, Q.; Li, G., Exact solutions and Ulam-Hyers stability for fractional oscillation equations with pure delay, Appl. Math. Lett., 112, 106666 (2021) · Zbl 1476.34162
[41] Huseynov, I. T.; Ahmadova, A.; Mahmudov, N. I., On a study of Sobolev type fractional functional evolution equations, Authorea (2021)
[42] I.T. Huseynov, A. Ahmadova, N.I. Mahmudov, Fractional Leibniz integral rules for Riemann-Liouville and Caputo fractional derivatives and their applications, arXiv:2012.11360v1.
[43] Matychyn, I.; Onyshchenko, V., Solution of linear fractional order systems with variable coefficients, Fract. Cal. Appl. Anal., 23, 753-763 (2020) · Zbl 1474.34047
[44] Mittag-Leffler, M. G., Sur la nouvelle fonction \(E_\alpha ( x )\), C. R. Acad. Sci. Paris, 137, 554-558 (1903) · JFM 34.0435.01
[45] Gorenflo, R.; Kilbas, A. A.; Mainardi, F.; Rogosin, S. V., Mittag-Leffler Functions, Related Topics and Applications (2014), Springer-Verlag: Springer-Verlag Berlin · Zbl 1309.33001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.