×

Unpredictability and entanglement in open quantum systems. (English) Zbl 07869211

Summary: We investigate dynamical many-body systems capable of universal computation, which leads to their properties being unpredictable unless the dynamics is simulated from the beginning to the end. Unpredictable behavior can be quantitatively assessed in terms of a data compression of the states occurring during the time evolution, which is closely related to their Kolmogorov complexity. We analyze a master equation embedding of classical cellular automata and demonstrate the existence of a phase transition between predictable and unpredictable behavior as a function of the random error introduced by the probabilistic character of the embedding. We then turn to have this dynamics competing with a second process inducing quantum fluctuations and dissipatively driving the system to a highly entangled steady state. Strikingly, for intermediate strength of the quantum fluctuations, we find that both unpredictability and quantum entanglement can coexist even in the long time limit. Finally, we show that the required many-body interactions for the cellular automaton embedding can be efficiently realized within a variational quantum simulator platform based on ultracold Rydberg atoms with high fidelity.
{© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft}

MSC:

81-XX Quantum theory
82-XX Statistical mechanics, structure of matter
83-XX Relativity and gravitational theory

Software:

QuTiP; SciPy

References:

[1] Gödel, K., Über formal unentscheidbare Sätze der principia mathematica und verwandter systeme I, Monatsh. Math. Phys., 38, 173 (1931) · Zbl 0002.00101 · doi:10.1007/BF01700692
[2] Turing, A. M., On computable numbers, with an application to the entscheidungsproblem, Proc. London Math. Soc., s2-42, 230 (1937) · JFM 62.1059.03 · doi:10.1112/plms/s2-42.1.230
[3] Lloyd, S., Quantum-mechanical computers and uncomputability, Phys. Rev. Lett., 71, 943 (1993) · doi:10.1103/PhysRevLett.71.943
[4] Cubitt, T. S.; Perez-Garcia, D.; Wolf, M. M., Undecidability of the spectral gap, Nature, 528, 207 (2015) · doi:10.1038/nature16059
[5] Shiraishi, N.; Matsumoto, K., Undecidability in quantum thermalization, Nat. Commun., 12, 5084 (2021) · doi:10.1038/s41467-021-25053-0
[6] Wolfram, S., Universality and complexity in cellular automata, Physica D, 10, 1 (1984) · Zbl 0562.68040 · doi:10.1016/0167-2789(84)90245-8
[7] Margolus, N., Physics-like models of computation, Physica D, 10, 81 (1984) · Zbl 0563.68051 · doi:10.1016/0167-2789(84)90252-5
[8] Berlekamp, E.; Conway, J.; Guy, R., Winning Ways for Your Mathematical Plays, vol 4 (2004), A K Peters · Zbl 1084.00002
[9] Cook, M., Universality in elementary cellular automata, Complex Syst., 15, 1 (2004) · Zbl 1167.68387 · doi:10.25088/ComplexSystems.15.1.1
[10] Neary, T.; Woods, D., P-completeness of cellular automaton rule 110, vol 4051, p 132 (2006) · Zbl 1223.68072
[11] Brennen, G. K.; Williams, J. E., Entanglement dynamics in one-dimensional quantum cellular automata, Phys. Rev. A, 68 (2003) · doi:10.1103/PhysRevA.68.042311
[12] Raussendorf, R., Quantum cellular automaton for universal quantum computation, Phys. Rev. A, 72 (2005) · doi:10.1103/PhysRevA.72.022301
[13] Arrighi, P.; Nesme, V.; Werner, R.; Martín-Vide, C.; Otto, F.; Fernau, H., Language and Automata Theory and Applications, pp 64-75 (2008), Springer
[14] Bleh, D.; Calarco, T.; Montangero, S., Quantum game of life, Europhys. Lett., 97 (2012) · doi:10.1209/0295-5075/97/20012
[15] Hillberry, L. E.; Jones, M. T.; Vargas, D. L.; Rall, P.; Halpern, N. Y.; Bao, N.; Notarnicola, S.; Montangero, S.; Carr, L. D., Entangled quantum cellular automata, physical complexity and goldilocks rules, Quantum Sci. Technol., 6 (2021) · doi:10.1088/2058-9565/ac1c41
[16] Lesanovsky, I.; Macieszczak, K.; Garrahan, J. P., Non-equilibrium absorbing state phase transitions in discrete-time quantum cellular automaton dynamics on spin lattices, Quantum Sci. Technol., 4, 02LT02 (2019) · doi:10.1088/2058-9565/aaf831
[17] Wintermantel, T. M.; Wang, Y.; Lochead, G.; Shevate, S.; Brennen, G. K.; Whitlock, S., Unitary and nonunitary quantum cellular automata with Rydberg arrays, Phys. Rev. Lett., 124 (2020) · doi:10.1103/PhysRevLett.124.070503
[18] Wolfram, S., Statistical mechanics of cellular automata, Rev. Mod. Phys., 55, 601 (1983) · Zbl 1174.82319 · doi:10.1103/RevModPhys.55.601
[19] Zenil, H., Compression-based investigation of the dynamical properties of cellular automata and other systems, Complex Syst., 19, 1 (2010) · Zbl 1217.68145 · doi:10.25088/ComplexSystems.19.1.1
[20] Roghani, M.; Weimer, H., Dissipative preparation of entangled many-body states with Rydberg atoms, Quantum Sci. Technol., 3 (2018) · doi:10.1088/2058-9565/aab3f3
[21] Browaeys, A.; Lahaye, T., Many-body physics with individually controlled Rydberg atoms, Nat. Phys., 16, 132 (2019) · doi:10.1038/s41567-019-0733-z
[22] Morgado, M.; Whitlock, S., Quantum simulation and computing with Rydberg-interacting qubits, AVS Quantum Sci., 3 (2021) · doi:10.1116/5.0036562
[23] Peruzzo, A.; McClean, J.; Shadbolt, P.; Yung, M-H; Zhou, X-Q; Love, P. J.; Aspuru-Guzik, A.; O’Brien, J. L., A variational eigenvalue solver on a photonic quantum processor, Nat. Commun., 5, 4213 (2014) · doi:10.1038/ncomms5213
[24] Moll, N., Quantum optimization using variational algorithms on near-term quantum devices, Quantum Sci. Technol., 3 (2018) · doi:10.1088/2058-9565/aab822
[25] Kokail, C., Self-verifying variational quantum simulation of lattice models, Nature, 569, 355 (2019) · doi:10.1038/s41586-019-1177-4
[26] Martinez, G. J.; Seck-Tuoh-Mora, J. C.; Zenil, H., Computation and universality: class IV versus class III cellular automata, J. Cell. Autom., 7, 393 (2013) · Zbl 1280.68134 · doi:10.48550/arXiv.1304.1242
[27] Sacha, K.; Zakrzewski, J., Time crystals: a review, Rep. Prog. Phys., 81 (2017) · doi:10.1088/1361-6633/aa8b38
[28] Eckmann, J. P.; Ruelle, D., Ergodic theory of chaos and strange attractors, Rev. Mod. Phys., 57, 617 (1985) · Zbl 0989.37516 · doi:10.1103/RevModPhys.57.617
[29] Tél, T.; Gruiz, M., Chaotic Dynamics: an Introduction Based on Classical Mechanics (2006), Cambridge University Press · Zbl 1108.70001
[30] Langton, C. G., Computation at the edge of chaos: phase transitions and emergent computation, Physica D, 42, 12 (1990) · doi:10.1016/0167-2789(90)90064-V
[31] Adamatzky, A., Game of Life Cellular Automata, vol 1 (2010), Springer · Zbl 1193.68004
[32] Cotler, J.; Hunter-Jones, N.; Liu, J.; Yoshida, B., Chaos, complexity and random matrices, J. High Energy Phys., 2017, 48 (2017) · Zbl 1383.83050 · doi:10.1007/JHEP11(2017)048
[33] Koppel, M., Complexity, depth and sophistication, Complex Syst., 1, 1087 (1987) · Zbl 0656.68049
[34] Aaronson, S.; Carroll, S. M.; Ouellette, L., Quantifying the rise and fall of complexity in closed systems: the coffee automaton (2014)
[35] Li, M.; Vitányi, P., An Introduction to Kolmogorov Complexity and Its Applications (Texts in Computer Science) (2008), Springer · Zbl 1185.68369
[36] Gray, F1953Pulse code communicationUS Patent No. 2,632,058
[37] Deutsch, L. P., DEFLATE Compressed Data Format Specification Version 1.3, RFC 1951 (1996), RFC Editor
[38] Wolfram, S., Cellular automata as models of complexity, Nature, 311, 419 (1984) · doi:10.1038/311419a0
[39] Breuer, H-P; Petruccione, F., The Theory of Open Quantum Systems (2002), Oxford University Press · Zbl 1053.81001
[40] Weimer, H.; Büchler, H. P., Two-stage melting in systems of strongly interacting Rydberg atoms, Phys. Rev. Lett., 105 (2010) · doi:10.1103/PhysRevLett.105.230403
[41] Arora, A.; Morse, D. C.; Bates, F. S.; Dorfman, K. D., Commensurability and finite size effects in lattice simulations of diblock copolymers, Soft Matter, 11, 4862 (2015) · doi:10.1039/C5SM00838G
[42] Arrighi, P., An overview of quantum cellular automata, Nat. Comput., 18, 885 (2019) · Zbl 1530.81039 · doi:10.1007/s11047-019-09762-6
[43] Farrelly, T., A review of quantum cellular automata, Quantum, 4, 368 (2020) · doi:10.22331/q-2020-11-30-368
[44] Klobas, K.; Bertini, B.; Piroli, L., Exact thermalization dynamics in the rule 54 quantum cellular automaton, Phys. Rev. Lett., 126 (2021) · doi:10.1103/PhysRevLett.126.160602
[45] Vidal, G.; Werner, R. F., Computable measure of entanglement, Phys. Rev. A, 65 (2002) · doi:10.1103/PhysRevA.65.032314
[46] Johansson, J.; Nation, P.; Nori, F., QuTiP 2: a Python framework for the dynamics of open quantum systems, Comp. Phys. Comm., 184, 1234 (2013) · doi:10.1016/j.cpc.2012.11.019
[47] Raghunandan, M.; Wrachtrup, J.; Weimer, H., High-density quantum sensing with dissipative first order transitions, Phys. Rev. Lett., 120 (2018) · doi:10.1103/PhysRevLett.120.150501
[48] Weimer, H.; Müller, M.; Lesanovsky, I.; Zoller, P.; Büchler, H. P., A Rydberg quantum simulator, Nat. Phys., 6, 382 (2010) · doi:10.1038/nphys1614
[49] Weimer, H.; Müller, M.; Büchler, H. P.; Lesanovsky, I., Digital quantum simulation with Rydberg atoms, Quantum Inf. Proc., 10, 885 (2011) · doi:10.1007/s11128-011-0303-5
[50] Weimer, H., Variational principle for steady states of dissipative quantum many-body systems, Phys. Rev. Lett., 114 (2015) · doi:10.1103/PhysRevLett.114.040402
[51] Overbeck, V. R.; Weimer, H., Time evolution of open quantum many-body systems, Phys. Rev. A, 93 (2016) · doi:10.1103/PhysRevA.93.012106
[52] Pistorius, T.; Weimer, H., Variational analysis of driven-dissipative bosonic fields, Phys. Rev. A, 104 (2021) · doi:10.1103/PhysRevA.104.063711
[53] Endres, M.; Bernien, H.; Keesling, A.; Levine, H.; Anschuetz, E. R.; Krajenbrink, A.; Senko, C.; Vuletic, V.; Greiner, M.; Lukin, M. D., Atom-by-atom assembly of defect-free one-dimensional cold atom arrays, Science, 354, 1024 (2016) · doi:10.1126/science.aah3752
[54] Barredo, D.; de Léséleuc, S.; Lienhard, V.; Lahaye, T.; Browaeys, A., An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays, Science, 354, 1021 (2016) · doi:10.1126/science.aah3778
[55] Nielsen, M. A.; Chuang, I. L., Quantum Computation and Quantum Information (2000), Cambridge University Press · Zbl 1049.81015
[56] Glaetzle, A. W.; Dalmonte, M.; Nath, R.; Gross, C.; Bloch, I.; Zoller, P., Designing frustrated quantum magnets with laser-dressed Rydberg atoms, Phys. Rev. Lett., 114 (2015) · doi:10.1103/PhysRevLett.114.173002
[57] Zeiher, J.; van Bijnen, R.; Schauß, P.; Hild, S.; Choi, J-Y; Pohl, T.; Bloch, I.; Gross, C., Many-body interferometry of a Rydberg-dressed spin lattice, Nat. Phys., 12, 1095 (2016) · doi:10.1038/nphys3835
[58] Overbeck, V. R.; Maghrebi, M. F.; Gorshkov, A. V.; Weimer, H., Multicritical behavior in dissipative Ising models, Phys. Rev. A, 95 (2017) · doi:10.1103/PhysRevA.95.042133
[59] Helmrich, S.; Arias, A.; Whitlock, S., Uncovering the nonequilibrium phase structure of an open quantum spin system, Phys. Rev. A, 98 (2018) · doi:10.1103/PhysRevA.98.022109
[60] Virtanen, P., SciPy 1.0: fundamental algorithms for scientific computing in Python, Nat. Methods, 17, 261 (2020) · doi:10.1038/s41592-019-0686-2
[61] McClean, J. R.; Boixo, S.; Smelyanskiy, V. N.; Babbush, R.; Neven, H., Barren plateaus in quantum neural network training landscapes, Nat. Commun., 9, 4812 (2018) · doi:10.1038/s41467-018-07090-4
[62] Weimer, H.; Kshetrimayum, A.; Orús, R., Simulation methods for open quantum many-body systems, Rev. Mod. Phys., 93 (2021) · doi:10.1103/RevModPhys.93.015008
[63] Schumacher, B., Quantum coding, Phys. Rev. A, 51, 2738 (1995) · doi:10.1103/PhysRevA.51.2738
[64] Jozsa, R.; Horodecki, M.; Horodecki, P.; Horodecki, R., universal quantum information compression, Phys. Rev. Lett., 81, 1714 (1998) · doi:10.1103/PhysRevLett.81.1714
[65] Rozema, L. A.; Mahler, D. H.; Hayat, A.; Turner, P. S.; Steinberg, A. M., Quantum data compression of a qubit ensemble, Phys. Rev. Lett., 113 (2014) · doi:10.1103/PhysRevLett.113.160504
[66] Romero, J.; Olson, J. P.; Aspuru-Guzik, A., Quantum autoencoders for efficient compression of quantum data, Quantum Sci. Technol., 2 (2017) · doi:10.1088/2058-9565/aa8072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.