×

Low frequency twisted waves in a self-gravitating nonextensive complex plasma. (English) Zbl 07868928

Summary: The effects of dust-dust self-gravitational force and nonextensive characteristics of plasma species on the low frequency twisted waves owing to the helical wave structure in complex (dusty) plasmas are analyzed. The electrons and ions of the plasma are modelled by nonextensive \(q\)-distribution function while massive dust particles are Maxwellian distributed. The self-gravitational effects are incorporated in the Vlasov equation of kinetic theory where perturbed distribution function, electrostatic and gravitational potentials are expressed with Laguerre-Gauss functions. The governing equations of kinetic theory are solved together under paraxial approximations. The dispersion relations and damping rates of twisted dust-acoustic waves (TDAWs) are obtained for two situations; (a) super-extensivity \((q<1)\) and (b) sub-extensivity \((q>1)\). The effects of self-gravity, nonextensivity and twist parameter significantly modified the basic features of dust-acoustic waves. This study contributes to our understanding of the complex dynamics of TDAWs in interstellar dust clouds, considering the interplay of self-gravity, nonextensivity, and helical phase structures. The obtained theoretical and numerical results provide valuable insights into the behavior of these waves and offer a foundation for further investigations in this field. However, understanding of the topic can be enhanced through a combination of theoretical models, numerical simulations and observational data.
{© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft}

MSC:

81-XX Quantum theory
82-XX Statistical mechanics, structure of matter
83-XX Relativity and gravitational theory

References:

[1] Jackson, J. D., Classical Electrodynamics (1962), Willey
[2] Allen, L.; Beijersbergen, M. W.; Spreeuw, R. J C.; Woerdman, J. P., Phys. Rev. A, 45, 8185 (1992) · doi:10.1103/PhysRevA.45.8185
[3] Ali, S.; Davies, J. R.; Mendonca, J. T., Phys. Rev. Lett., 105 (2010) · doi:10.1103/PhysRevLett.105.035001
[4] Mendonca, J. T.; Vieira, J., Phys. Plasmas, 22 (2015) · doi:10.1063/1.4936824
[5] Shukla, P. K., Phys. Rev. E, 87 (2013) · doi:10.1103/PhysRevE.87.015101
[6] Mendonca, J. T.; Thide, B.; Then, H., Phys. Rev. Lett., 102 (2009) · doi:10.1103/PhysRevLett.102.185005
[7] Beijersbergen, M. W.; Coerwinkel, R. P C.; Kristensen1, M.; Woerdman, J. P., Opt. Commun., 112, 321 (1994) · doi:10.1016/0030-4018(94)90638-6
[8] Uchida, M.; Tonomura, A., Nature, 464, 737 (2010) · doi:10.1038/nature08904
[9] Taira, Y.; Hayakawa, T.; Katoh, M., Sci. Rep., 7, 5018 (2017) · doi:10.1038/s41598-017-05187-2
[10] Verbeeck, J.; Tian, H.; Schattschneider, P., Nature, 467, 301 (2010) · doi:10.1038/nature09366
[11] Padgett, M.; Bowman, R., Nat. Photon., 5, 343 (2011) · doi:10.1038/nphoton.2011.81
[12] Grewing, M.; Praderie, F.; Reinhard, R., Exploration of Halley’s Comet (1988), Springer
[13] Sibeck, D. G., J. Geophys. Res., 95, 3755 (1990) · doi:10.1029/JA095iA04p03755
[14] Ayub, M. K.; Ali, S.; Mendonca, J. T., Phys. Plasmas, 18 (2011) · doi:10.1063/1.3655429
[15] Mendonca, J. T., Phys. Plasmas, 19 (2012) · doi:10.1063/1.4769030
[16] Ali, S.; Bukhari, S.; Mendonca, J. T., Phys. Plasmas, 23 (2016) · doi:10.1063/1.4944396
[17] Bukhari, S.; Ali, S.; Khan, S. A.; Mendonca, J. T., J. Plasma Phys., 84 (2018) · doi:10.1017/S0022377818000223
[18] Bukhari, S.; Ali, S.; Rafique, M., Planet. Space Sci., 159, 11 (2018) · doi:10.1016/j.pss.2018.03.018
[19] Bukhari, S.; Khan, S. A.; Ali, S., Phys. Lett. A, 383, 2908 (2019) · Zbl 1476.85008 · doi:10.1016/j.physleta.2019.06.008
[20] Bukhari, S.; Raza, S. R A.; Ali, S., Chin. J. Phys., 70, 196 (2021) · Zbl 07834905 · doi:10.1016/j.cjph.2020.12.023
[21] Renyi, A., Acta Math. Hung., 6, 285 (1955) · Zbl 0067.10401 · doi:10.1007/BF02024393
[22] Tsallis, C., J. Stat. Phys., 52, 479 (1988) · Zbl 1082.82501 · doi:10.1007/BF01016429
[23] Plastino, A.; Plastino, A. R., Phys. Lett. A, 177, 177 (1993) · doi:10.1016/0375-9601(93)90021-Q
[24] Boghosian, B. M., Phys. Rev. E, 53, 4754 (1996) · doi:10.1103/PhysRevE.53.4754
[25] Lavagno, A.; Kaniadakis, G.; Monteiro, M. R.; Quarati, P.; Tsallis, C., Astrophys. Lett. Commun., 35, 449 (1998)
[26] Lima, J. A S.; Silva, R.; Santos, J., Phys. Rev. E, 61, 3260 (2000) · doi:10.1103/PhysRevE.61.3260
[27] Goertz, C. K., Rev. Geophys., 27, 271 (1989) · doi:10.1029/RG027i002p00271
[28] Mendis, D. A.; Rosenberg, M., Annu. Rev. Astron. Astrophys., 32, 419 (1994) · doi:10.1146/annurev.aa.32.090194.002223
[29] Verheest, F., Space Sci. Rev., 77, 267 (1996) · doi:10.1007/BF00226225
[30] Selwyn, G. S., Jpn. J. Appl. Phys., 32, 3068 (1993) · doi:10.1143/JJAP.32.3068
[31] Singh, S., Waves and instabilities in E × B dusty plasma, Thermophysical Properties of Complex Materials (2019), IntechOpen · doi:10.5772/intechopen.90397
[32] Pachauri, S.; Misra, K. P., Plasma Res. Express, 4 (2022) · doi:10.1088/2516-1067/ac728a
[33] Howard, J. E.; Horanyi, M.; Stewart, G. R., Phys. Rev. Lett., 83, 3993 (1999) · doi:10.1103/PhysRevLett.83.3993
[34] Yaroshenko, V. V.; Jacobs, G.; Verheest, F., Phys. Rev. E, 63 (2001) · doi:10.1103/PhysRevE.63.066406
[35] Bliokh, P. V.; Yaroshenko, V. V., Astron. Zh., 62, 569 (1985)
[36] Bukhari, S.; Hussain, N.; Ali, S., Chin. Phys. B, 30 (2021) · doi:10.1088/1674-1056/abf641
[37] Gurnett, D. A.; Bhattacharjee, A., Introduction to Plasma Physics With Space and Laboratory Applications (2005), Cambridge University Press · Zbl 1376.82002
[38] Bukhari, S.; Ali, S.; Rafique, M.; Mendonca, J. T., Contrib. Plasma Phys., 57, 404 (2017) · doi:10.1002/ctpp.201700063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.