×

Parameters estimation for the Hammerstein-Wiener models with colored noise based on hybrid signals. (English) Zbl 07867847

Summary: A three-stage estimation approach of the Hammerstein-Wiener model with colored noise using hybrid signals is considered in this article. The Hammerstein-Wiener model where a linear dynamic block is embedded between two static nonlinear elements, in which two nonlinear elements represented by two independent neural fuzzy models and a linear element represented by autoregressive exogenous model. The designed hybrid signals that consist of separable signals and random signals are devoted to estimating independently. First, the characteristics of separable signals in the action of the static nonlinear element are analyzed, then the output nonlinear element parameters are estimated utilizing two groups of separable signals with a multiple. Moreover, least squares based on correlation analysis method is applied to estimate linear element using one set of separable signals, which handles the interference of colored process noise. Finally, the recursive extended least squares algorithm is derived to estimate the input nonlinear element and the autoregressive moving average noise model, which improves parameters estimation accuracy owing to estimating colored noise model parameters in recursive estimate process. The feasibility of the presented estimation technique is demonstrated by an illustrative simulation example and a practical nonlinear process.
© 2023 John Wiley & Sons Ltd.

MSC:

93E10 Estimation and detection in stochastic control theory
93E12 Identification in stochastic control theory
93C10 Nonlinear systems in control theory
Full Text: DOI

References:

[1] LiuQ, DingF. Gradient‐based recursive parameter estimation for a periodically nonuniformly sampled‐data Hammerstein‐Wiener system based on the key‐term separation. Int J Adapt Control Sign Process. 2021;35(10):1970‐1989. · Zbl 1543.93323
[2] ZhenK, YanJ, LiuX. Hierarchical recursive least squares algorithms for Hammerstein nonlinear autoregressive output‐error systems. Int J Adapt Control Sign Process. 2021;35(11):2276‐2295. · Zbl 1543.93319
[3] MaJ, DingF, XiongW, YangE. Combined state and parameter estimation for Hammerstein systems with time delay using the Kalman filtering. Int J Adapt Control Sign Process. 2017;31(8):1139‐1151. · Zbl 1373.93326
[4] LuoX. Application of subspace predictive control method in Hammerstein‐Wiener system. 2020 International Conference on Computer Information and Big Data Applications (CIBDA). IEEE; 2020:412‐415.
[5] LuoX, SongY. Data‐driven predictive control of Hammerstein‐Wiener models based on subspace identification. Inform Sci. 2018;422:447‐461. · Zbl 1447.93093
[6] YuF, HongX. Parameter tracking of time‐varying Hammerstein‐Wiener systems. Int J Syst Sci. 2021;52(16):3478‐3492. · Zbl 1483.93639
[7] YuF, MaoZ, JiaM, YuanP. Recursive parameter identification of Hammerstein‐Wiener systems with measurement noise. Signal Process. 2014;105:137‐147.
[8] JengJ, LinY. Data‐driven nonlinear control design using virtual reference feedback tuning based on block‐oriented modeling of nonlinear models. Ind Eng Chem Res. 2018;57(22):7583‐7599.
[9] SalhiH, KamounS. A recursive parametric estimation algorithm of multivariable nonlinear systems described by Hammerstein mathematical models. App Math Model. 2015;39(16):4951‐4962. · Zbl 1443.93016
[10] LiuQ, XiaoY, DingF, HayatV. Decomposition‐based over‐parameterization forgetting factor stochastic gradient algorithm for Hammerstein‐Wiener nonlinear systems with non‐uniform sampling. Int J Robust Nonlinear Control. 2021;31(12):6007‐6024. · Zbl 1525.93439
[11] AboudaS, ElloumiM, KoubaaY, ChaariA. Over parameterisation and optimisation approaches for identification of nonlinear stochastic systems described by Hammerstein‐Wiener models. Int J Modell Identif Control. 2019;33(1):61‐75.
[12] HouJ, ChenF, LiP, ZhuZ. Fixed point iteration‐based subspace identification of Hammerstein state‐space models. IET Control Theory Appl. 2019;13(8):1173‐1181. · Zbl 1432.93362
[13] LiuL, DingF, HayatT. Maximum likelihood gradient identification for multivariate equation‐error moving average systems using the multi‐innovation theory. Int J Adapt Control Sign Process. 2019;33(7):1031‐1046. · Zbl 1425.93293
[14] WangD, FanQ, MaY. An interactive maximum likelihood estimation method for multivariable Hammerstein systems. J Franklin Inst. 2020;357(17):12986‐13005. · Zbl 1454.93285
[15] DingF, LiuX, ChuJ. Gradient‐based and least‐squares‐based iterative algorithms for Hammerstein systems using the hierarchical identification principle. IET Control Theory Appl. 2013;7(2):176‐184.
[16] DongJ. Robust data‐driven iterative learning control for linear‐time‐invariant and Hammerstein‐Wiener systems. IEEE Trans Cybern. 2023;53(2):1144‐1157.
[17] VanbeylenL, PintelonR, SchoukensJ. Blind maximum likelihood identification of Hammerstein systems. Automatica. 2008;44(12):3139‐3146. · Zbl 1153.93522
[18] BaiE. A blind approach to the Hammerstein‐Wiener model identification. Automatica. 2002;38(6):967‐979. · Zbl 1012.93018
[19] KomatsuK, MiyajiY, UeharaH. Basis function selection of frequency‐domain Hammerstein self‐interference canceller for in‐band full‐duplex wireless communications. IEEE Trans Wirel Commun. 2018;17(6):3768‐3780.
[20] BrouriA, GiriF. Identification of series‐parallel systems composed of linear and nonlinear blocks. Int J Adapt Control Sign Process. 2023;37:2021‐2040. · Zbl 07844280
[21] BrouriA, ChaouiF, GiriF. Identification of Hammerstein‐Wiener models with hysteresis front nonlinearities. Int J Control. 2022;95(12):3353‐3367. · Zbl 1505.93043
[22] LiF, ZhuX, HeN, GuY. Parameter learning for the nonlinear system described by Hammerstein model with output disturbance. Asian J Control. 2023;25(2):886‐898. · Zbl 07889044
[23] ParkH, SungS, LeeJ. Modeling of Hammerstein‐Wiener processes with special input test signals. Ind Eng Chem Res. 2006;45(3):1029‐1038.
[24] YuF, MaoZ, JiaM. Recursive identification for Hammerstein‐Wiener systems with dead‐zone input nonlinearity. J Process Control. 2013;23(8):1108‐1115.
[25] MacArthurJ. A new approach for nonlinear process identification using orthonormal bases and ordinal splines. J Process Control. 2012;22(2):375‐389.
[26] GiriF, BrouriA, AmdouriO, ChaouiF. Frequency identification of Hammerstein‐Wiener systems with piecewise affine input nonlinearity. IFAC Proc Vol. 2014;47(3):10030‐10035.
[27] XuK, YangH, ZhuC. A novel extreme learning machine‐based Hammerstein‐Wiener model for complex nonlinear industrial processes. Neurocomputing. 2019;258:246‐254.
[28] ChenW, ZhangR, LiuH, XieX, YanL. A novel method for solar panel temperature determination based on a wavelet neural network and Hammerstein‐Wiener model. Adv Space Res. 2020;66(8):2035‐2046.
[29] AboudaS, BenH, ElloumiM, KoubaaY, ChaariA. Identification of nonlinear dynamic systems using fuzzy Hammerstein‐Wiener systems. 19th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA). IEEE; 2019:365‐370.
[30] AbidD, AboudaS, MedhaffarH, ChtourouM. An improved method for stochastic nonlinear system’s identification using fuzzy‐type output‐error autoregressive Hammerstein‐Wiener model based on gradient algorithm. Multi‐Innovat Data Filter Dent Tech. 2021;2021:1‐29. doi:10.1155/2021/8525090
[31] JiaL, FengQ. Combined separable signals based neuro‐fuzzy Hammerstein‐Wiener model. Memetic Comput. 2017;9:245‐259.
[32] LiF, ChenL, WoS, LiS, CaoQ. Modeling and parameter learning for the Hammerstein‐Wiener model with disturbance. Measur Control. 2020;53(5-6):971‐982.
[33] WangD, DingF. Hierarchical least squares estimation algorithm for Hammerstein‐Wiener systems. IEEE Signal Process Lett. 2012;19(12):825‐828.
[34] LiF, JiaL, PengD, HanC. Neuro‐fuzzy based identification method for Hammerstein output error model with colored noise. Neurocomputing. 2017;244:90‐101.
[35] LiF, JiaL, PengD. Identification method of neuro‐fuzzy‐based Hammerstein model with coloured noise. IET Control Theory Appl. 2017;11(17):3026‐3037.
[36] SchoukensM, BaiE, RolainY. Identification of Hammerstein‐Wiener systems. IFAC Proc Vol. 2012;45(16):274‐279.
[37] WangD, DingF. Extended stochastic gradient identification algorithms for Hammerstein‐Wiener ARMAX systems. Comput Math Appl. 2008;56(12):3157‐3164. · Zbl 1165.65308
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.