×

Maximum likelihood gradient identification for multivariate equation-error moving average systems using the multi-innovation theory. (English) Zbl 1425.93293

Summary: For the multivariate equation-error moving average system, a multivariate maximum likelihood multi-innovation extended stochastic gradient (M-ML-MIESG) algorithm is delivered. The key is to decompose the system into several regressive identification subsystems according to the number of the system outputs. Then, a multivariate maximum likelihood extended stochastic gradient algorithm is presented to estimate the parameters of these subsystems. The M-ML-MIESG algorithm has higher parameter estimation accuracy than the multivariate extended stochastic gradient algorithm. The simulation examples indicate that the proposed methods work well.

MSC:

93E12 Identification in stochastic control theory
93E10 Estimation and detection in stochastic control theory
93C35 Multivariable systems, multidimensional control systems
Full Text: DOI

References:

[1] XuL. A proportional differential control method for a time‐delay system using the Taylor expansion approximation. Appl Math Comput. 2014;236:391‐399. · Zbl 1334.93125
[2] XuL. Application of the Newton iteration algorithm to the parameter estimation for dynamical systems. J Comput Appl Math. 2015;288:33‐43. · Zbl 1314.93062
[3] XuL, ChenL, XiongW. Parameter estimation and controller design for dynamic systems from the step responses based on the Newton iteration. Nonlinear Dynamics. 2015;79(3):2155‐2163.
[4] XuL. The damping iterative parameter identification method for dynamical systems based on the sine signal measurement. Signal Processing. 2016;120:660‐667.
[5] XuL. The parameter estimation algorithms based on the dynamical response measurement data. Adv Mech Eng. 2017;9(11):1‐12. https://doi.org/10.1177/1687814017730003 · doi:10.1177/1687814017730003
[6] XuL, XiongW, AlsaediA, HayatT. Hierarchical parameter estimation for the frequency response based on the dynamical window data. Int J Control Autom Syst. 2018;16(4):1756‐1764.
[7] ChenG‐Y, GanM, ChenCLP, LiHX. A regularized variable projection algorithm for separable nonlinear least‐squares problems. IEEE Trans Autom Control. 2019;64(2):526‐537. · Zbl 1482.93717
[8] ChenG‐Y, GanM, DingF, ChenCLP. Modified Gram‐Schmidt method‐based variable projection algorithm for separable nonlinear models. IEEE Trans Neural Netw Learn Syst. 2019. https://doi.org/10.1109/TNNLS.2018.2884909 · doi:10.1109/TNNLS.2018.2884909
[9] GanM, ChenCLP, ChenGY, ChenL. On some separated algorithms for separable nonlinear least squares problems. IEEE Trans Cybern. 2018;48(10):2866‐2874.
[10] QianJH, LopsM, ZhengL, WangXD, HeZS. Joint system design for coexistence of MIMO radar and MIMO communication. IEEE Trans Signal Process. 2018;66(13):3504‐3519. · Zbl 1415.94208
[11] PanJ, MaH, JiangX, DingW, DingF. Adaptive gradient‐based iterative algorithm for multivariate controlled autoregressive moving average systems using the data filtering technique. Complexity. 2018. Article ID 9598307. https://doi.org/10.1155/2018/9598307 · Zbl 1398.93348 · doi:10.1155/2018/9598307
[12] DingJ. The hierarchical iterative identification algorithm for multi‐input‐output‐error systems with autoregressive noise. Complexity. 2017;1‐11. Article ID 5292894. https://doi.org/10.1155/2017/5292894 · Zbl 1377.93164 · doi:10.1155/2017/5292894
[13] LiDP, LiDJ, LiuYJ, TongSC, ChenCLP. Approximation‐based adaptive neural tracking control of nonlinear MIMO unknown time‐varying delay systems with full state constraints. IEEE Trans Cybern. 2017;47(10):3100‐3109.
[14] SalhiH, KamounS. A recursive parametric estimation algorithm of multivariable nonlinear systems described by Hammerstein mathematical models. Appl Math Model. 2015;39(16):4951‐4962. · Zbl 1443.93016
[15] GaoZ‐K, FangP‐C, DingM‐S, JinN‐D. Multivariate weighted complex network analysis for characterizing nonlinear dynamic behavior in two‐phase flow. Exp Thermal Fluid Sci. 2015;60:157‐164.
[16] HuangHL, ZhouHC, WangJ, ChangFR, MaM. A multivariate spatial model of crash frequency by transportation modes for urban intersections. Anal Methods Accid Res. 2017;14:10‐21.
[17] DingJ, ChenJZ, LinJX, WangLJ. Particle filtering based parameter estimation for systems with output‐error type model structures. J Franklin Inst. 2019;356. https://doi.org/10.1016/j.jfranklin.2019.04.027 · Zbl 1415.93249 · doi:10.1016/j.jfranklin.2019.04.027
[18] LiuQY, DingF, XuL, YangEF. Partially coupled gradient estimation algorithm for multivariable equation‐error autoregressive moving average systems using the data filtering technique. IET Control Theory Appl. 2019;13(5):642‐650. · Zbl 1434.93103
[19] WangX, DingF. Convergence of the recursive identification algorithms for multivariate pseudo‐linear regressive systems. Int J Adapt Control Signal Process. 2015;30(6):824‐842.
[20] LiuQ, DingF. Auxiliary model‐based recursive generalized least squares algorithm for multivariate output‐error autoregressive systems using the data filtering. Circuits Syst Signal Process. 2019;38(2):590‐610.
[21] ZorziM. A new family of high‐resolution multivariate spectral estimators. IEEE Trans Autom Control. 2014;59(4):892‐904. · Zbl 1360.62467
[22] ZorziM. Multivariate spectral estimation based on the concept of optimal prediction. IEEE Trans Autom Control. 2015;60(6):1647‐1652. · Zbl 1360.62285
[23] UmenbergerJ, WagbergJ, ManchesterIR, SchönTB. Maximum likelihood identification of stable linear dynamical systems. Automatica. 2018;96:280‐292. · Zbl 1406.93362
[24] ChenX, ZhaoS, LiuF. Identification of time‐delay Markov jump autoregressive exogenous systems with expectation‐maximization algorithm. Int J Adapt Control Signal Process. 2017;31(12):1920‐1933. · Zbl 1383.93091
[25] JiaoJ, VenkatK, HanY, WeissmanT. Maximum likelihood estimation of functionals of discrete distributions. IEEE Trans Inf Theory. 2017;63(10):6774‐6798. · Zbl 1453.62432
[26] SöderströmT, SoveriniU. Errors‐in‐variables identification using maximum likelihood estimation in the frequency domain. Automatica. 2017;79:131‐143. · Zbl 1371.93210
[27] BaúburaM, ModugnoM. Maximum likelihood estimation of factor models on datasets with arbitrary pattern of missing data. J Appl Econ. 2014;29(1):133‐160.
[28] ChenF, DingF. The filtering based maximum likelihood recursive least squares estimation for multiple‐input single‐output systems. Appl Math Model. 2016;40(3):2106‐2118. · Zbl 1452.62693
[29] ChangM‐X, ChangW‐Y. Maximum‐likelihood detection for MIMO systems based on differential metrics. IEEE Trans Signal Process. 2017;65(14):3718‐3732. · Zbl 1414.94772
[30] XuL, DingF. Parameter estimation algorithms for dynamical response signals based on the multi‐innovation theory and the hierarchical principle. IET Signal Processing. 2017;11(2):228‐237.
[31] XuL, DingF. Recursive least squares and multi‐innovation stochastic gradient parameter estimation methods for signal modeling. Circuits Syst Signal Process. 2017;36(4):1735‐1753. · Zbl 1370.94286
[32] XuL, DingF, GuY, AlsaediA, HayatT. A multi‐innovation state and parameter estimation algorithm for a state space system with d‐step state‐delay. Signal Processing. 2017;140:97‐103.
[33] PanJ, JiangX, WanX, DingW. A filtering based multi‐innovation extended stochastic gradient algorithm for multivariable control systems. Int J Control Autom Syst. 2017;15(3):1189‐1197.
[34] DingF, WangX, MaoL, XuL. Joint state and multi‐innovation parameter estimation for time‐delay linear systems and its convergence based on the Kalman filtering. Digit Signal Process. 2017;62:211‐223.
[35] ChengS, WeiY, ShengD, ChenY, WangY. Identification for Hammerstein nonlinear ARMAX systems based on multi‐innovation fractional order stochastic gradient. Signal Processing. 2018;142:1‐10.
[36] LiuL, DingF, ZhuQ. Recursive identification for multivariate autoregressive equation‐error systems with autoregressive noise. Int J Syst Sci. 2018;49(13):2763‐2775. · Zbl 1482.93655
[37] CaoY, LuH, WenT. A safety computer system based on multi‐sensor data processing. Sensors. 2019;19(4). https://doi.org/10.3390/s19040818 · doi:10.3390/s19040818
[38] CaoY, ZhangY, WenT, LiP. Research on dynamic nonlinear input prediction of fault diagnosis based on fractional differential operator equation in high‐speed train control system. Chaos. 2019;29(1). Article ID 013130. https://doi.org/10.1063/1.5085397 · doi:10.1063/1.5085397
[39] CaoY, LiP, ZhangY. Parallel processing algorithm for railway signal fault diagnosis data based on cloud computing. Future Gener Comput Syst. 2018;88:279‐283.
[40] CaoY, MaLC, XiaoS, ZhangS, XuW. Standard analysis for transfer delay in CTCS‐3. Chin J Electron. 2017;26(5):1057‐1063.
[41] XuL, DingF. Parameter estimation for control systems based on impulse responses. Int J Control Autom Syst. 2017;15(6):2471‐2479.
[42] DingF, LiuPX, LiuG. Gradient based and least‐squares based iterative identification methods for OE and OEMA systems. Digit Signal Process. 2010;20(3):664‐677.
[43] DingF. Decomposition based fast least squares algorithm for output error systems. Signal Processing. 2013;93(5):1235‐1242.
[44] DingF. Two‐stage least squares based iterative estimation algorithm for CARARMA system modeling. Appl Math Model. 2013;37(7):4798‐4808. · Zbl 1438.93228
[45] GuY, ChouY, LiuJ, JiY. Moving horizon estimation for multirate systems with time‐varying time‐delays. J Franklin Inst. 2019;356(4):2325‐2345. · Zbl 1409.93064
[46] GeZ, DingF, XuL, AlsaediA, HayatT. Gradient‐based iterative identification method for multivariate equation‐error autoregressive moving average systems using the decomposition technique. J Franklin Inst. 2019;356(3):1658‐1676. · Zbl 1406.93358
[47] ZhangX, DingF, AlsaadiFE, HayatT. Recursive parameter identification of the dynamical models for bilinear state space systems. Nonlinear Dynamics. 2017;89(4):2415‐2429. · Zbl 1377.93062
[48] ZhangX, XuL, DingF, HayatT. Combined state and parameter estimation for a bilinear state space system with moving average noise. J Franklin Inst. 2018;355(6):3079‐3103. · Zbl 1395.93174
[49] ZhangX, DingF, XuL, YangE. State filtering‐based least squares parameter estimation for bilinear systems using the hierarchical identification principle. IET Control Theory Appl. 2018;12(12):1704‐1713.
[50] LiuS, DingF, XuL, HayatT. Hierarchical principle‐based iterative parameter estimation algorithm for dual‐frequency signals. Circuits Syst Signal Process. 2019;1‐18. https://doi.org/10.1007/s00034-018-1015-1 · doi:10.1007/s00034-018-1015-1
[51] XuH, DingF, YangE. Modeling a nonlinear process using the exponential autoregressive time series model. Nonlinear Dynamics. 2019;95(3):2079‐2092. https://doi.org/10.1007/s11071-018-4677-0 · Zbl 1432.37109 · doi:10.1007/s11071-018-4677-0
[52] WenY, YinC. Solution of Hamilton‐Jacobi‐Bellman equation in optimal reinsurance strategy under dynamic VaR constraint. J Funct Spaces. 2019. Article ID 6750892. https://doi.org/10.1155/2019/6750892 · Zbl 1411.91323 · doi:10.1155/2019/6750892
[53] TianX, NiuH. A bi‐objective model with sequential search algorithm for optimizing network‐wide train timetables. Comput Ind Eng. 2019;127:1259‐1272.
[54] YangF, ZhangP, LiX‐X. The truncation method for the Cauchy problem of the inhomogeneous Helmholtz equation. Applicable Analysis. 2019;98(5):991‐1004. · Zbl 1409.35233
[55] SunZ‐Y, ZhangD, MengQ, ChenC‐C. Feedback stabilization of time‐delay nonlinear systems with continuous time‐varying output function. Int J Syst Sci. 2019;50(2):244‐255. · Zbl 1482.93479
[56] MaFY, YinYK, LiM. Start‐up process modelling of sediment microbial fuel cells based on data driven. Math Probl Eng. 2019. Article ID 7403732. https://doi.org/10.1155/2019/7403732 · doi:10.1155/2019/7403732
[57] ZhaoN, LiuR, ChenY, et al. Contract design for relay incentive mechanism under dual asymmetric information in cooperative networks. Wirel Netw. 2018;24(8):3029‐3044.
[58] WuM, LiX, LiuC, et al. Robust global motion estimation for video security based on improved k‐means clustering. J Ambient Intell Humaniz Comput. 2019;10(2):439‐448.
[59] WanX, WuH, QiaoF, et al. Electrocardiogram baseline wander suppression based on the combination of morphological and wavelet transformation based filtering. Comput Math Methods Med. 2019. Article ID 7196156. https://doi.org/10.1155/2019/7196156 · doi:10.1155/2019/7196156
[60] WangTZ, DongJJ, XieT, DialloD, BenbouzidM. A self‐learning fault diagnosis strategy based on multi‐model fusion. Information. 2019;10(3), Article Number: 116. https://doi.org/10.3390/info10030116 · doi:10.3390/info10030116
[61] ZhanX‐S, ChengL‐L, WuJ, YangQ‐S, HanT. Optimal modified performance of MIMO networked control systems with multi‐parameter constraints. ISA Transactions. 2019;84(1):111‐117.
[62] PanJ, LiW, ZhangH. Control algorithms of magnetic suspension systems based on the improved double exponential reaching law of sliding mode control. Int J Control Autom Syst. 2018;16(6):2878‐2887.
[63] ShaXY, XuZS, YinCC. Elliptical distribution-based weight-determining method for ordered weighted averaging operators. Int J Intell Syst. 2019;34(5):858‐877.
[64] FengL, LiQX, LiYF. Imaging with 3‐D aperture synthesis radiometers. IEEE Trans Geoscience and Remote Sensing. 2019;57(4):2395‐2406.
[65] FuB, OuyangCX, LiCS, WangJW, GulE. An improved mixed integer linear programming approach based on symmetry diminishing for unit commitment of hybrid power system. Energies. 2019;12(5). Article No. 833. https://doi.org/10.3390/en12050833 · doi:10.3390/en12050833
[66] ShiWX, LiuN, ZhouYM, CaoXA. Effects of postannealing on the characteristics and reliability of polyfluorene organic light‐emitting diodes. IEEE Trans Electron Devices. 2019;66(2):1057‐1062.
[67] WuTZ, ShiX, LiaoL, ZhouCJ, ZhouH, SuYH. A capacity configuration control strategy to alleviate power fluctuation of hybrid energy storage system based on improved particle swarm optimization. Energies. 2019;12(4):1‐11. Article Number: 642. https://doi.org/10.3390/en12040642 · doi:10.3390/en12040642
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.