×

Prismatic-element SBPML coupled with SBFEM for 3D infinite transient wave problems. (English) Zbl 07867415

Summary: In this paper, an enhanced prismatic-element scaled boundary perfectly matched layer (SBPML) is developed, which is a novel time-domain artificial boundary method for 3D infinite wave problems. The SBPML permits the utilization of an artificial boundary with general geometry and can consider planar physical surfaces and interfaces extending to infinity. Moreover, this enhancement enables the seamless integration with surface meshes of arbitrary polygonal faces (such as triangles, quadrangles, pentagons, heptagons, octagons, etc.) at the truncation boundaries. The interior domain can be modelled by polyhedrons formulated by the scaled boundary finite element method (SBFEM). The geometric shape of the SBPML elements in the proposed method, within the local coordinate system, takes the form of a regular prism with regular polygonal top and bottom faces. Consequently, it is referred to as the Prismatic-element SBPML. Local scaled boundary coordinates based on the polygonal shape function are firstly introduced into the truncated infinite domain to describe its general geometry properties and provide the coupled capabilities with arbitrary polygonal face meshes at the truncation boundaries of numerical models. Then, a complex stretching function from PML is applied to radial direction of the local scaled boundary coordinates to map the physical space onto the complex space, resulting in a SBPML domain. Upon spatial discretization, the proposed method is formulated using a 2nd-order mixed displacement-stress unsplit-field formulation, allowing seamless coupling with FEM and SBFEM originally designed for the interior computational domain. Finally, three benchmark examples of wave propagation problems in unbounded domains and two soil-structure interaction problems of engineering problems are presented to demonstrate the accuracy and robustness of the Prismatic-element SBPML.

MSC:

65-XX Numerical analysis
74-XX Mechanics of deformable solids
Full Text: DOI

References:

[1] Clough, R. W., The finite element method in plane stress analysis, (Proc. 2nd ASCE Conference on Electronic Computation. Proc. 2nd ASCE Conference on Electronic Computation, PA, 1960)
[2] Gong, J.; Zou, D. G.; Kong, X. J.; Liu, J. M.; Qu, Y. Q., An approach for simulating the interaction between soil and discontinuous structure with mixed interpolation interface [J], Eng. Struct., 237, Article 112035 pp., 2021
[3] Song, C. M., The scaled boundary finite element method: introduction to theory and implementation, 2018, John Wiley & Sons: John Wiley & Sons Chichester
[4] Song, C. M.; Qu, Y. L.; Liu, L.; Chen, D. H., A review of numerical methods for far-field modeling in dynamic soil-structure interaction systems, J. Hydroelectric Eng., 38, 1-17, 2019
[5] Liu, L.; Zhang, J.; Song, C. M.; Birk, C.; Gao, W., An automatic approach for the acoustic analysis of three-dimensional bounded and unbounded domains by scaled boundary finite element method, Int. J. Mech. Sci., 151, 563-581, 2019
[6] Lysmer, J.; Kuhlemeyer, R. L., Finite dynamic model for infinite media, J. Engineer. Mechan. Divis., 95, 859-877, 1969
[7] Du, X. L.; Zhao, M.; Wang, J. T., A stress artificial boundary in FEA for near-field wave problem, Chinese J. Theoret. Appl. Mech., 38, 49-56, 2006
[8] Liu, J. B.; Du, Y. X.; Du, X. L.; Wang, Z. Y.; Wu, J., 3D viscous-spring artificial boundary in time domain, Earthquake Eng. Eng. Vibrat., 5, 93-102, 2006
[9] Xing, H.; Li, X.; Li, H.; Xie, Z.; Chen, S.; Zhou, Z., The theory and new unified formulas of displacement-Type local absorbing boundary conditions, Bullet. Seismolog.Soc. America, 111, 801-824, 2020
[10] Berenger, J. P., A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114, 185-200, 1994 · Zbl 0814.65129
[11] Givoli, D., High-order local non-reflecting boundary conditions: a review, Wave Motion., 39, 319-326, 2004 · Zbl 1163.74356
[12] Wu, L. H.; Zhao, M.; Jeng, D. S.; Wang, P. G.; Du, X. L., A local time-domain absorbing boundary condition for scalar wave propagation in a multilayered medium, Comput. Geotech., 128, Article 103809 pp., 2020
[13] Li, P.; Song, E., A general viscous-spring transmitting boundary for dynamic analysis of saturated poroelastic media, Int. J. Numer. Anal. Methods Geomech., 40, 344-366, 2016
[14] Ba, Z. N.; Wang, Y.; Liang, J. W.; Liu, X. N., 3D dynamic responses of a 2D hill in a layered half-space subjected to obliquely incident plane P-, SV- and SH-waves, Eng. Anal. Bound. Elem., 105, 129-145, 2019 · Zbl 1464.74239
[15] Birk, C.; Behnke, R., A modified scaled boundary finite element method for three-dimensional dynamic soil-structure interaction in layered soil, Int. J. Numer. Methods Eng., 89, 371-402, 2012 · Zbl 1242.74095
[16] Huang, L.; Liu, Z.; Wu, C.; Liang, J., The scattering of plane P, SV waves by twin lining tunnels with imperfect interfaces embedded in an elastic half-space, Tunnell. Underground Space Techn., 85, 319-330, 2019
[17] Bencharif, R.; Hadid, M.; Mezouar, N., Hybrid BEM-TLM-PML method for the dynamic impedance functions calculation of a rigid strip-footing on a nearly saturated poroelastic soil profile, Eng. Anal. Bound. Elem., 116, 31-47, 2020 · Zbl 1464.74242
[18] Li, H.; He, C.; Gong, Q.; Zhou, S.; Li, X.; Zou, C., TLM-CFSPML for 3D dynamic responses of a layered transversely isotropic half-space, Comput. Geotech., 168, 106-131, 2024
[19] Yu, B.; Hu, P.; Saputra, A. A.; Gu, Y., The scaled boundary finite element method based on the hybrid quadtree mesh for solving transient heat conduction problems, Appl Math Model, 89, 541-571, 2021 · Zbl 1476.80014
[20] Li, Z. Y.; Hu, Z. Q.; Lin, G.; Li, J. B., A scaled boundary finite element method procedure for arch dam-water-foundation rock interaction in complex layered half-space, Comput. Geotech., 141, Article 114524 pp., 2022
[21] Li, Z. Y.; Hu, Z. Q.; Lin, G.; Zhong, H., A modified scaled boundary finite element method for dynamic response of a discontinuous layered half-space, Appl Math Model, 87, 77-90, 2020 · Zbl 1481.65245
[22] Zhao, M.; Wu, L. H.; Du, X. L.; Zhong, Z. L.; Xu, C. S.; Li, L., Stable high-order absorbing boundary condition based on new continued fraction for scalar wave propagation in unbounded multilayer media, Comput. Methods Appl. Mech. Eng., 334, 111-137, 2018 · Zbl 1440.74171
[23] Hamdan, N.; Laghrouche, O.; Woodward, P. K.; El-Kacimi, A., Combined paraxial-consistent boundary conditions finite element model for simulating wave propagation in elastic half-space media, Soil Dyn. Earthquake Eng., 70, 80-92, 2015
[24] Chen, J.; Zhou, X., Advanced absorbing boundaries for elastodynamic finite element analysis: the added degree of freedom method, Comput. Methods Appl. Mech. Eng., 420, Article 116752 pp., 2024 · Zbl 1536.74245
[25] Basu, U.; Chopra, A. K., Numerical evaluation of the damping : olvent extraction method in the frequency domain, Earthq. Eng. Struct. Dyn., 31, 1231-1250, 2002
[26] Chew, W. C.; Liu, Q. H., Perfectly matched layers for elastodynamics: a new absorbing boundary condition, J. Computat. Acoustics, 4, 341-359, 1996
[27] Pled, F.; Desceliers, C., Review and recent developments on the perfectly matched layer (PML) method for the numerical modeling and simulation of elastic wave propagation in unbounded domains, Arch. Computat. Methods Eng., 29, 471-518, 2022
[28] Chew, W. C.; Weedon, W. H., A 3D perfectly matched medium from modified maxwell’s equations with stretched coordinates, Microwave Optical Techn. Letters, 7, 599-604, 1994
[29] Zhou, F. X.; Wang, L. Y., An efficient unsplit perfectly matched layer for finite-element time-domain modeling of elastodynamics in cylindrical coordinates, Pure Appl. Geophys., 177, 4345-4363, 2020
[30] Fathi, A.; Poursartip, B.; Kallivokas, L. F., Time-domain hybrid formulations for wave simulations in three-dimensional PML-truncated heterogeneous media, Int. J. Numer. Methods Eng., 101, 165-198, 2015 · Zbl 1352.74141
[31] Matzen, R., An efficient finite element time-domain formulation for the elastic second-order wave equation: a non-split complex frequency shifted convolutional PML, Int. J. Numer. Methods Eng., 88, 951-973, 2011 · Zbl 1242.74139
[32] Meza-Fajardo, K. C.; Papageorgiou, A. S., Study of the accuracy of the multiaxial perfectly matched layer for the elastic-wave equation, Bullet. Seismolog. Soc. America, 102, 2458-2467, 2012
[33] Komatitsch, D.; Tromp, J., A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation, Geophys. J. Royal Astronomical Society, 154, 146-153, 2003
[34] Kucukcoban, S.; Kallivokas, L. F., Mixed perfectly-matched-layers for direct transient analysis in 2D elastic heterogeneous media, Comput. Methods Appl. Mech. Eng., 200, 57-76, 2011 · Zbl 1225.74094
[35] Basu, U.; Chopra, A. K., Perfectly matched layers for time-harmonic elastodynamics of unbounded domains: theory and finite-element implementation, Comput. Methods Appl. Mech. Eng., 192, 1337-1375, 2003 · Zbl 1041.74035
[36] Zhang, W.; Taciroglu, E., A novel Rayleigh-type viscoelastic Perfectly-Matched-Layer for wave propagation analysis: formulation, implementation and application, Comput. Methods Appl. Mech. Eng., 383, Article 113913 pp., 2021 · Zbl 1506.74458
[37] Kim, B.; Kang, J. W., Time domain modeling of elastic waves using a stress-based unsplit-field perfectly matched layer with enhanced numerical stability, Appl Math Model, 128, 431-449, 2024
[38] Kristek, J.; Moczo, P.; Galis, M., A brief summary of some PML formulations and discretizations for the velocity-stress equation of seismic motion, Studia Geophysica Et Geodaetica, 53, 459-474, 2009
[39] Komatitsch, D.; Martin, R., An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation, Geophysics, 72, SM155-SM167, 2007
[40] Gao, Y.; Zhang, J.; Yao, Z., Unsplit complex frequency shifted perfectly matched layer for second-order wave equation using auxiliary differential equations, J. Acoust. Soc. Am., 138, EL551-EL557, 2015
[41] Huang, J.; Yang, D.; He, X., A unified higher-order unsplit CFS-PML technique for solving second-order seismic equations using discontinuous Galerkin method, J. Comput. Phys., 500, Article 112776 pp., 2024 · Zbl 07811345
[42] Xu, J.; Hu, H.; Liu, Q. H.; Han, B., A high-order perfectly matched layer scheme for second-order spectral-element time-domain elastic wave modelling, J. Comput. Phys., 491, Article 112373 pp., 2023 · Zbl 07771289
[43] Ping, P.; Zhang, Y.; Xu, Y.; Chu, R., Efficiency of perfectly matched layers for seismic wave modeling in second-order viscoelastic equations, Geophys. J. Int., 207, 1367-1386, 2016
[44] François, S.; Goh, H.; Kallivokas, L. F., Non-convolutional second-order complex-frequency-shifted perfectly matched layers for transient elastic wave propagation, Comput. Methods Appl. Mech. Eng., 377, Article 113704 pp., 2021 · Zbl 1506.74157
[45] Kucukcoban, S.; Kallivokas, L. F., A symmetric hybrid formulation for transient wave simulations in PML-truncated heterogeneous media, Wave Motion., 50, 57-79, 2013 · Zbl 1360.74137
[46] Ping, P.; Zhang, Y.; Xu, Y., A multiaxial perfectly matched layer (M-PML) for the long-time simulation of elastic wave propagation in the second-order equations, J. Appl. Geophy., 101, 124-135, 2014
[47] Bériot, H.; Modave, A., An automatic perfectly matched layer for acoustic finite element simulations in convex domains of general shape, Int. J. Numer. Methods Eng., 122, 1239-1261, 2021 · Zbl 07863110
[48] Zhang, G. L.; Zhao, M.; Zhang, J. Q.; Du, X. L., Scaled Boundary Perfectly Matched Layer (SBPML): a novel 3D time-domain artificial boundary method for wave problem in general-shaped and heterogeneous infinite domain, Comput. Methods Appl. Mech. Eng., 403, Article 115738 pp., 2023 · Zbl 1536.74290
[49] Zhang, G. L.; Zhao, M.; Du, X. L.; Zhang, J. Q., Time-domain scaled boundary perfectly matched layer for elastic wave propagation, Int. J. Numer. Methods Eng., 124, 3906-3934, 2023 · Zbl 1542.74082
[50] Li, Z.; Hu, Z.; Lin, G.; Li, J., A scaled boundary finite element method procedure for arch dam-water-foundation rock interaction in complex layered half-space, Comput. Geotech., 141, Article 104524 pp., 2022
[51] Zhang, G. L.; Zhao, M.; Zhang, J. Q.; Wang, J. T.; Du, X. L., Scaled boundary perfectly matched layer for wave propagation in a three-dimensional poroelastic medium, Appl Math Model, 125, 108-138, 2024
[52] Zhang, J. Q.; Zhao, M.; Eisenträger, S.; Du, X. L.; Song, C. M., An asynchronous parallel explicit solver based on scaled boundary finite element method using octree meshes, Comput. Methods Appl. Mech. Eng., 401, Article 115653 pp., 2022 · Zbl 1507.74525
[53] Zou, D. G.; Chen, K.; Kong, X. J.; Liu, J. B., An enhanced octree polyhedral scaled boundary finite element method and its applications in structure analysis, Eng. Anal. Bound. Elem., 84, 87-107, 2017 · Zbl 1403.74273
[54] Liu, L.; Zhang, J. Q.; Song, C. M.; Birk, C.; Saputra, A. A.; Gao, W., Automatic three-dimensional acoustic-structure interaction analysis using the scaled boundary finite element method, J. Comput. Phys., 395, 432-460, 2019 · Zbl 1452.65350
[55] Huo, S. H.; Liu, G. R.; Zhang, J. Q.; Song, C. M., A smoothed finite element method for octree-based polyhedral meshes with large number of hanging nodes and irregular elements, Comput. Methods Appl. Mech. Eng., 359, Article 112646 pp., 2020 · Zbl 1441.65103
[56] Nguyen-Ngoc, H.; Cuong-Le, T.; Nguyen, K. D.; Nguyen-Xuan, H.; Abdel-Wahab, M., Three-dimensional polyhedral finite element method for the analysis of multi-directional functionally graded solid shells, Compos. Struct., 305, Article 116538 pp., 2023
[57] Chen, K.; Zou, D.; Kong, X. J.; Chan, A., A novel nonlinear solution for the polygon scaled boundary finite element method and its application to geotechnical structures, Comput. Geotech., 82, 201-210, 2017
[58] Ya, S. K.; Eisenträger, S.; Song, C. M.; Li, J. B., An open-source ABAQUS implementation of the scaled boundary finite element method to study interfacial problems using polyhedral meshes, Comput. Methods Appl. Mech. Eng., 381, Article 113766 pp., 2021 · Zbl 1506.74473
[59] Zhang, J.; Natarajan, S.; Ooi, E. T.; Song, C. M., Adaptive analysis using scaled boundary finite element method in 3D, Comput. Methods Appl. Mech. Eng., 372, Article 113374 pp., 2020 · Zbl 1506.74475
[60] Deeks, A. J.; Augarde, C. E., A hybrid meshless local Petrov-Galerkin method for unbounded domains, Comput. Methods Appl. Mech. Eng., 196, 843-852, 2007 · Zbl 1121.74471
[61] Gao, L.; Zhu, C. L.; Li, J. B.; Hu, Z. Q., Dynamic crack propagation analysis using scaled boundary finite element method, Transact. Tianjin University, 19, 391-397, 2013
[62] Wang, Y.; Lin, G.; Hu, Z. Q., Novel nonreflecting boundary condition for an infinite reservoir based on the scaled boundary finite-element method, J. Eng. Mech., 141, Article 04014150 pp., 2015
[63] Klinkel, S.; Chen, L.; Dornisch, W., A NURBS based hybrid collocation-Galerkin method for the analysis of boundary represented solids, Comput. Methods Appl. Mech. Eng., 284, 689-711, 2015 · Zbl 1425.65166
[64] Sukumar, N.; Tabarraei, A., Conformal polygonal finite elements, Int. J. Numer. Methods Eng., 61, 2045-2066, 2004 · Zbl 1073.65563
[65] Zhao, M.; Li, H. F.; Cao, S.; Du, X. L., An explicit time integration algorithm for linear and non-linear finite element analyses of dynamic and wave problems, Eng. Comput. (Swansea), 36, 161-177, 2019
[66] Zhang, J. Q.; Ankit, A.; Gravenkamp, H.; Eisenträger, S.; Song, C. M., A massively parallel explicit solver for elasto-dynamic problems exploiting octree meshes, Comput. Methods Appl. Mech. Eng., 380, Article 113811 pp., 2021 · Zbl 1506.74507
[67] Gravenkamp, H.; Song, C. M.; Zhang, J. Q., On mass lumping and explicit dynamics in the scaled boundary finite element method, Comput. Methods Appl. Mech. Eng., 370, Article 113274 pp., 2020 · Zbl 1506.74467
[68] Gu, Y.; Liu, J. B.; Du, Y. X., 3D consistent viscous-spring artificial boundary and viscous-spring boundary element, Eng. Mech., 24, 31-37, 2007, in Chinese
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.