×

Mean-field models of populations of quadratic integrate-and-fire neurons with noise on the basis of the circular cumulant approach. (English) Zbl 07866670


MSC:

92B20 Neural networks for/in biological studies, artificial life and related topics
92C20 Neural biology
92D25 Population dynamics (general)
Full Text: DOI

References:

[1] Luke, T. B.; Barreto, E.; So, P., Complete classification of the macroscopic behavior of a heterogeneous network of theta neurons, Neural Comput., 25, 3207, 2013 · Zbl 1448.92046 · doi:10.1162/NECO_a_00525
[2] Laing, C. R., Derivation of a neural field model from a network of theta neurons, Phys. Rev. E, 90, 1, 010901, 2014 · doi:10.1103/PhysRevE.90.010901
[3] Laing, C. R., Exact neural fields incorporating gap junctions, SIAM J. Appl. Dyn. Syst., 14, 4, 1899, 2015 · Zbl 1369.92020 · doi:10.1137/15M1011287
[4] Pazó, D.; Montbrió, E., Low-dimensional dynamics of populations of pulse-coupled oscillators, Phys. Rev. X, 4, 011009, 2014 · doi:10.1103/PhysRevX.4.011009
[5] Montbrió, E.; Pazó, D.; Roxin, A., Macroscopic description for networks of spiking neurons, Phys. Rev. X, 5, 021028, 2015 · doi:10.1103/PhysRevX.5.021028
[6] di Volo, M.; Torcini, A., Transition from asynchronous to oscillatory dynamics in balanced spiking networks with instantaneous synapses, Phys. Rev. Lett., 121, 128301, 2018 · doi:10.1103/PhysRevLett.121.128301
[7] di Volo, M., Segneri, M., Goldobin, D. S., Politi, A., and Torcini, A., “Emergence of collective oscillations in balanced neural networks due to endogeneous fluctuations ” (unpublished) (2021).
[8] Ratas, I.; Pyragas, K., Noise-induced macroscopic oscillations in a network of synaptically coupled quadratic integrate-and-fire neurons, Phys. Rev. E, 100, 052211, 2019 · doi:10.1103/PhysRevE.100.052211
[9] Zheng, T.; Kotani, K.; Jimbo, Y., Distinct efects of heterogeneity and noise on gamma oscillation in a model of neuronal network with diferent reversal potential, Sci. Rep., 11, 12960, 2021 · doi:10.1038/s41598-021-91389-8
[10] Bi, H.; Segneri, M.; di Volo, M.; Torcini, A., Coexistence of fast and slow gamma oscillations in one population of inhibitory spiking neurons, Phys. Rev. Res., 2, 013042, 2020 · doi:10.1103/PhysRevResearch.2.013042
[11] Pietras, B.; Daffertshofer, A., Network dynamics of coupled oscillators and phase reduction techniques, Phys. Rep., 819, 1, 2019 · doi:10.1016/j.physrep.2019.06.001
[12] Klinshov, V.; Kirillov, S.; Nekorkin, V., Reduction of the collective dynamics of neural populations with realistic forms of heterogeneity, Phys. Rev. E, 103, L040302, 2021 · doi:10.1103/PhysRevE.103.L040302
[13] Zakharov, D. G.; Krupa, M.; Gutkin, B. S.; Kuznetsov, A. S., High-frequency forced oscillations in neuronlike elements, Phys. Rev. E, 97, 062211, 2018 · doi:10.1103/PhysRevE.97.062211
[14] Rooy, M.; Novikov, N. A.; Zakharov, D. G.; Gutkin, B. S., Interaction between PFC neural networks ultraslow fluctuations and brain oscillations, Izv. VUZ Appl. Nonlinear Dynam., 28, 1, 90, 2020 · doi:10.18500/0869-6632-2020-28-1-90-97
[15] Ott, E.; Antonsen, T. M., Low dimensional behavior of large systems of globally coupled oscillators, Chaos, 18, 037113, 2008 · Zbl 1309.34058 · doi:10.1063/1.2930766
[16] Ott, E.; Antonsen, T. M., Long time evolution of phase oscillator systems, Chaos, 19, 023117, 2009 · Zbl 1309.34059 · doi:10.1063/1.3136851
[17] Watanabe, S.; Strogatz, S. H., Constant of motion for superconducting Josephson arrays, Phys. D, 74, 197, 1994 · Zbl 0812.34043 · doi:10.1016/0167-2789(94)90196-1
[18] Pikovsky, A.; Rosenblum, M., Partially integrable dynamics of hierarchical populations of coupled oscillators, Phys. Rev. Lett., 101, 2264103, 2008 · doi:10.1103/PhysRevLett.101.264103
[19] Marvel, S. A.; Mirollo, R. E.; Strogatz, S. H., Identical phase oscillators with global sinusoidal coupling evolve by Möbius group action, Chaos, 19, 043104, 2009 · Zbl 1311.34082 · doi:10.1063/1.3247089
[20] Gong, C. C.; Zheng, C.; Toenjes, R.; Pikovsky, A., Repulsively coupled Kuramoto-Sakaguchi phase oscillators ensemble subject to common noise, Chaos, 29, 033127, 2019 · Zbl 1411.34063 · doi:10.1063/1.5084144
[21] Rybalova, E.; Anishchenko, V. S.; Strelkova, G. I.; Zakharova, A., Solitary states and solitary state chimera in neural networks, Chaos, 29, 071106, 2019 · Zbl 1420.34078 · doi:10.1063/1.5113789
[22] Rybalova, E.; Bukh, A.; Strelkova, G.; Anishchenko, V., Spiral and target wave chimeras in a 2D lattice of map-based neuron models, Chaos, 29, 101104, 2019 · Zbl 1426.37057 · doi:10.1063/1.5126178
[23] Semenova, N.; Zakharova, A.; Anishchenko, V.; Schöll, E., Coherence-resonance chimeras in a network of excitable elements, Phys. Rev. Lett., 117, 014102, 2016 · doi:10.1103/PhysRevLett.117.014102
[24] Semenova, N.; Zakharova, A.; Schöll, E.; Anishchenko, V., Does hyperbolicity impede emergence of chimera states in networks of nonlocally coupled chaotic oscillators?, Europhys. Lett., 112, 40002, 2015 · doi:10.1209/0295-5075/112/40002
[25] Shepelev, I. A.; Vadivasova, T. E.; Bukh, A. V.; Strelkova, G. I.; Anishchenko, V. S., New type of chimera structures in a ring of bistable FitzHugh-Nagumo oscillators with nonlocal interaction, Phys. Lett. A, 381, 1398, 2017 · doi:10.1016/j.physleta.2017.02.034
[26] Bogomolov, S. A.; Slepnev, A. V.; Strelkova, G. I.; Schöll, E.; Anishchenko, V. S., Mechanisms of appearance of amplitude and phase chimera states in ensembles of nonlocally coupled chaotic systems, Commun. Nonlinear Sci. Numer. Simul., 43, 25, 2017 · Zbl 1471.37040 · doi:10.1016/j.cnsns.2016.06.024
[27] Kilpatrick, Z. P.; Ermentrout, B., Sparse gamma rhythms arising through clustering in adapting neuronal networks, PLoS Comput. Biol., 7, 11, e1002281, 2011 · doi:10.1371/journal.pcbi.1002281
[28] Zakharov, D.; Krupa, M.; Gutkin, B., Modeling dopaminergic modulation of clustered gamma rhythms, Commun. Nonlinear Sci. Numer. Simul., 82, 105086, 2020 · Zbl 1453.92028 · doi:10.1016/j.cnsns.2019.105086
[29] Brunel, N.; Hakim, V., Fast global oscillations in networks of integrate-and-fire neurons with low firing rates, Neural Comput., 11, 1621, 1999 · doi:10.1162/089976699300016179
[30] Brunel, N., Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons, J. Comput. Neurosci., 8, 183, 2000 · Zbl 1036.92008 · doi:10.1023/A:1008925309027
[31] Izhikevich, E. M., Dynamical Systems in Neuroscience, 2007, MIT Press: MIT Press, Cambridge, MA
[32] Ermentrout, G. B.; Kopell, N., Parabolic bursting in an excitable system coupled with a slow oscillation, SIAM J. Appl. Math., 46, 233, 1986 · Zbl 0594.58033 · doi:10.1137/0146017
[33] Goldobin, D. S.; di Volo, M.; Torcini, A., A reduction methodology for fluctuation driven population dynamics, Phys. Rev. Lett., 127, 038301, 2021 · doi:10.1103/PhysRevLett.127.038301
[34] Tyulkina, I. V.; Goldobin, D. S.; Klimenko, L. S.; Pikovsky, A., Dynamics of noisy oscillator populations beyond the Ott-Antonsen ansatz, Phys. Rev. Lett., 120, 264101, 2018 · doi:10.1103/PhysRevLett.120.264101
[35] Goldobin, D. S.; Tyulkina, I. V.; Klimenko, L. S.; Pikovsky, A., Collective mode reductions for populations of coupled noisy oscillators, Chaos, 28, 101101, 2018 · Zbl 1400.34053 · doi:10.1063/1.5053576
[36] Goldobin, D. S.; Dolmatova, A. V., Ott-Antonsen ansatz truncation of a circular cumulant series, Phys. Rev. Res., 1, 033139, 2019 · doi:10.1103/PhysRevResearch.1.033139
[37] Tyulkina, I. V.; Goldobin, D. S.; Klimenko, L. S.; Pikovsky, A. S., Two-bunch solutions for the dynamics of Ott-Antonsen phase ensembles, Radiophys. Quantum Electron., 61, 8-9, 640-649, 2019 · doi:10.1007/s11141-019-09924-7
[38] Goldobin, D. S., Relationships between the distribution of Watanabe-Strogatz variables and circular cumulants for ensembles of phase elements, Fluct. Noise Lett., 18, 2, 1940002, 2019 · doi:10.1142/S0219477519400029
[39] Goldobin, D. S.; Dolmatova, A. V., Circular cumulant reductions for macroscopic dynamics of Kuramoto ensemble with multiplicative intrinsic noise, J. Phys. A: Math. Theor., 53, 08LT01, 2020 · Zbl 1514.34060 · doi:10.1088/1751-8121/ab6b90
[40] Klinshov, V. V.; Zlobin, D. A.; Maryshev, B. S.; Goldobin, D. S., Effect of noise on the collective dynamics of a heterogeneous population of active rotators, Chaos, 31, 043101, 2021 · Zbl 1460.34054 · doi:10.1063/5.0030266
[41] Gallego, R.; Montbrió, E.; Pazó, D., Synchronization scenarios in the Winfree model of coupled oscillators, Phys. Rev. E, 96, 042208, 2017 · doi:10.1103/PhysRevE.96.042208
[42] Esnaola-Acebes, J. M.; Roxin, A.; Avitabile, D.; Montbrió, E., Synchrony-induced modes of oscillation of a neural field model, Phys. Rev. E, 96, 052407, 2017 · doi:10.1103/PhysRevE.96.052407
[43] Laing, C. R.; Omel’chenko, O., Moving bumps in theta neuron networks, Chaos, 30, 043117, 2020 · Zbl 1437.92006 · doi:10.1063/1.5143261
[44] Laing, C. R.; Blasche, Ch.; Means, Sh., Dynamics of structured networks of Winfree oscillators, Front. Syst. Neurosci., 15, 631377, 2021 · doi:10.3389/fnsys.2021.631377
[45] Laing, C. R., The effects of degree distributions in random networks of type-I neurons, Phys. Rev. E, 103, 052305, 2021 · doi:10.1103/PhysRevE.103.052305
[46] Daido, H., Onset of cooperative entrainment in limit-cycle oscillators with uniform all-to-all interactions: Bifurcation of the order function, Phys. D, 91, 24, 1996 · Zbl 0890.58067 · doi:10.1016/0167-2789(95)00260-X
[47] Lukacs, E., Characteristic Functions, 1970, Griffin: Griffin, London · Zbl 0201.20404
[48] Malahov, A. N., Cumulant Analysis of Random Non-Gaussian Processes and Their Transformations [in Russian], 1978, Soviet Radio: Soviet Radio, Moscow · Zbl 0447.60083
[49] Yakubovich, E. I., Dynamics of processes in media with inhomogeneous broadening of the line of the working transition, Sov. Phys. JETP, 28, 1, 160, 1969
[50] Rabinovich, M. I.; Trubetskov, D. I., Oscillations and Waves: In Linear and Nonlinear Systems, 1989, Springer Netherlands · Zbl 0712.70001
[51] Crawford, J. D., Amplitude expansions for instabilities in populations of globally-coupled oscillators, J. Stat. Phys., 74, 5-6, 1047, 1994 · Zbl 0831.34040 · doi:10.1007/BF02188217
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.