×

Spiral and target wave chimeras in a 2D lattice of map-based neuron models. (English) Zbl 1426.37057

Summary: We study the dynamics of a two-dimensional lattice of nonlocally coupled-map-based neuron models represented by Rulkov maps. It is firstly shown that this discrete-time neural network can exhibit spiral and target waves and corresponding chimera states when the control parameters (the coupling strength and the coupling radius) are varied. It is demonstrated that one-core, multicore, and ring-shaped core spiral chimeras can be realized in the network. We also reveal a novel type of chimera structure – a target wave chimera. We explore the transition from spiral wave chimeras to target wave structures when varying the coupling parameters. We report for the first time that the spiral wave regime can be suppressed by applying noise excitations, and the subsequent transition to the target wave mode occurs.
©2019 American Institute of Physics

MSC:

37L60 Lattice dynamics and infinite-dimensional dissipative dynamical systems
92B20 Neural networks for/in biological studies, artificial life and related topics
82C32 Neural nets applied to problems in time-dependent statistical mechanics
39A60 Applications of difference equations
Full Text: DOI

References:

[1] Kaneko, K., Pattern dynamics in spatiotemporal chaos: Pattern selection, diffusion of defect and pattern competition intermettency, Phys. D Nonlinear Phenom., 34, 1-2, 1-41 (1989) · Zbl 0702.58043
[2] Kuramoto, Y., Chemical Oscillations, Waves and Turbulence (1984) · Zbl 0558.76051
[3] Nicolis, G.; Nicolis, G., Introduction to Nonlinear Science (1995) · Zbl 1230.37016
[4] Mikhailov, A. S.; Loskutov, A., Foundation of Synergetics: Complex Patterns (1995)
[5] Afraimovich, V.; Nekorkin, V.; Osipov, G.; Shalfeev, V., Stability, Structures and Chaos in Nonlinear Synchronization Networks (1995)
[6] Strogatz, S. H., Exploring complex networks, Nature, 410, 268-276 (2001) · Zbl 1370.90052
[7] Dorogovtsev, S. N.; Mendes, J. F., Evolution of networks, Adv. Phys., 51, 4, 1079-1187 (2002)
[8] Newman, M. E., The structure and function of complex networks, SIAM Rev., 45, 2, 167-256 (2003) · Zbl 1029.68010
[9] Ben-Naim, E.; Frauenfelder, H.; Toroczkai, Z., Complex Networks (2004)
[10] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D. U., Complex networks: Structure and dynamics, Phys. Rep., 424, 4-5, 175-308 (2006) · Zbl 1371.82002
[11] Nekorkin, V. I.; Velarde, M. G., Synergetic Phenomena in Active Lattices: Patterns, Waves, Solitons, Chaos (2012) · Zbl 1006.37002
[12] Kuramoto, Y.; Battogtokh, D., Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, Nonlinear Phenom. Complex Syst., 5, 4, 380-385 (2002)
[13] Abrams, D. M.; Strogatz, S. H., Chimera states for coupled oscillators, Phys. Rev. Lett., 93, 17, 174102 (2004)
[14] Wolfrum, M.; Omel’chenko, E., Chimera states are chaotic transients, Phys. Rev. E, 84, 1, 015201 (2011)
[15] Hagerstrom, A. M.; Murphy, T. E.; Roy, R.; Hövel, P.; Omelchenko, I.; Schöll, E., Experimental observation of chimeras in coupled-map lattices, Nat. Phys., 8, 9, 658 (2012)
[16] Wojewoda, J.; Czolczynski, K.; Maistrenko, Y.; Kapitaniak, T., The smallest chimera state for coupled pendula, Sci. Rep., 6, 34329 (2016)
[17] Sieber, J.; Omel’chenko, O.; Wolfrum, M., Controlling unstable chaos: Stabilizing chimera states by feedback, Phys. Rev. Lett., 112, 5, 054102 (2014)
[18] Wolfrum, M.; Omel’chenko, O. E.; Yanchuk, S.; Maistrenko, Y. L., Spectral properties of chimera states, Chaos, 21, 1, 013112 (2011) · Zbl 1345.34067
[19] Semenova, N.; Zakharova, A.; Schöll, E.; Anishchenko, V., Does hyperbolicity impede emergence of chimera states in networks of nonlocally coupled chaotic oscillators?, Europhys. Lett., 112, 4, 40002 (2015)
[20] Semenova, N.; Zakharova, A.; Anishchenko, V.; Schöll, E., Coherence-resonance chimeras in a network of excitable elements, Phys. Rev. Lett., 117, 1, 014102 (2016)
[21] Bukh, A.; Rybalova, E.; Semenova, N.; Strelkova, G.; Anishchenko, V., New type of chimera and mutual synchronization of spatiotemporal structures in two coupled ensembles of nonlocally interacting chaotic maps, Chaos, 27, 11, 111102 (2017) · Zbl 1390.37128
[22] Rybalova, E. V.; Strelkova, G. I.; Anishchenko, V. S., Mechanism of realizing a solitary state chimera in a ring of nonlocally coupled chaotic maps, Chaos Solitons Fractals, 115, 300-305 (2018) · Zbl 1416.39010
[23] Bogomolov, S. A.; Slepnev, A. V.; Strelkova, G. I.; Schöll, E.; Anishchenko, V. S., Mechanisms of appearance of amplitude and phase chimera states in ensembles of nonlocally coupled chaotic systems, Commun. Nonlinear Sci. Numerical Simul., 43, 25-36 (2017) · Zbl 1471.37040
[24] Strelkova, G., Rybalova, E., Anishchenko, V., and Zakharova, A., AIP Conf. Proc. 1978, 470014 (2018).
[25] Omelchenko, I.; Zakharova, A.; Schöll, E., Control of chimera states in multilayer networks, Frontiers Appl. Math. and Stat., 4, 67 (2019)
[26] Ruzzene, G.; Omelchenko, I.; Schöll, E.; Zakharova, A.; Andrzejak, R. G., Controlling chimera states via minimal coupling modification, Chaos, 29, 5, 051103 (2019) · Zbl 1415.34093
[27] Keener, J. P.; Tyson, J. J., Spiral waves in the Belousov-Zhabotinskii reaction, Physica D, 21, 2-3, 307-324 (1986) · Zbl 0611.35041
[28] Hendrey, M.; Nam, K.; Guzdar, P.; Ott, E., Target waves in the complex ginzburg-landau equation, Phys. Rev. E, 62, 7627-7631 (2000)
[29] Shima, S.; Kuramoto, Y., Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators, Phys. Rev. E, 69, 3, 036213 (2004)
[30] Ávalos, E.; Lai, P.-Y.; Chan, C. K., Spiral waves in the heterogeneous excitable Kuramoto model, Europhys. Lett., 94, 60006 (2011)
[31] Panaggio, M. J.; Abrams, D. M., Chimera states on a flat torus, Phys. Rev. Lett., 110, 9, 094102 (2013)
[32] Grace, M.; Hütt, M.-T., Predictability of spatio-temporal patterns in a lattice of coupled FitzHugh-Nagumo oscillators, J. R. Soc. Interface, 10, 81, 20121016 (2013)
[33] Li, B. W.; Dierckx, H., Spiral wave chimeras in locally coupled oscillator systems, Phys. Rev. E, 93, 020202(R) (2016)
[34] Schmidt, A.; Kasimatis, T.; Hizanidis, J.; Provata, A.; Hövel, P., Chimera patterns in two-dimensional networks of coupled neurons, Phys. Rev. E, 95, 3, 032224 (2017)
[35] Bukh, A.; Strelkova, G.; Anishchenko, V., Spiral wave patterns in a two-dimensional lattice of nonlocally coupled maps modeling neural activity, Chaos Solitons Fractals, 120, 75-82 (2019) · Zbl 1448.39030
[36] Zhang, H.; Hu, B.; Hu, G., Suppression of spiral waves and spatiotemporal chaos by generating target waves in excitable media, Phys. Rev. E, 68, 2, 026134 (2003)
[37] Davidenko, J. M.; Pertsov, A. M.; Salomonsz, R.; Baxter, W. T.; Jalife, J., Stationary and drifting spiral waves of excitation in isolated cardiac muscle, Nature, 355, 349-351 (1992)
[38] Fenton, F.; Karma, A., Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation, Chaos, 8, 20-47 (1998) · Zbl 1069.92503
[39] Fenton, F. H.; Cherry, E. M.; Hastings, H. M.; Evans, S. J., Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity, Chaos, 12, 852-892 (2002)
[40] Pavlov, E. A.; Osipov, G. V., Modeling of cardiac activity on the basis of maps: Dynamics of single element, Izv. VUZ. Appl. Nonlinear Dyn., 19, 3, 104-115 (2011) · Zbl 1243.92011
[41] Gokhale, T. A.; Medvescek, E.; Henriquez, C. S., Modeling dynamics in diseased cardiac tissue: Impact of model choice, Chaos, 27, 093909 (2017)
[42] Dierckx, H.; Fenton, F. H.; Filippi, S.; Pumir, A. J.; Sridhar, S., Simulating normal and arrhythmic dynamics: From sub-cellular to tissue and organ level, Front. Phys., 7, 89 (2019)
[43] Loppini, A.; Gizzi, A.; Cherubini, C.; Cherry, E. M.; Fenton, F. H.; Filippi, S., Spatiotemporal correlation uncovers characteristic lengths in cardiac tissue, Phys. Rev. E, 100, 2, 020201 (2019)
[44] Fenton, F. H.; Cherry, E. M.; Glass, L., Cardiac arrhythmia, Scholarpedia, 3, 7, 1665 (2008)
[45] Totz, J. F.; Rode, J.; Tinsley, M. R.; Showalter, K.; Engel, H., Spiral wave chimera states in large populations of coupled chemical oscillators, Nat. Phys., 14, 3, 282 (2018)
[46] Guo, S.; Dai, Q.; Cheng, H.; Li, H.; Xie, F.; Yang, J., Spiral wave chimera in two-dimensional nonlocally coupled FitzHugh-Nagumo systems, Chaos Solitons Fractals, 114, 394-399 (2018) · Zbl 1415.34070
[47] Rulkov, N. F., Modeling of spiking-bursting neural behavior using two-dimensional map, Phys. Rev. E, 65, 4, 041922 (2002) · Zbl 1244.34077
[48] Bukh, A. V.; Anishchenko, V. S., Spiral, target and chimera wave structures in a two-dimensional ensemble of nonlocally coupled Van der Pol oscillators, Tech. Phys. Lett., 45, 7, 675-678 (2019)
[49] Yuan, G.; Wang, G.; Chen, S., Control of spiral waves and spatiotemporal chaos by periodic perturbation near the boundary, Europhys. Lett., 72, 6, 908 (2005)
[50] Yu, L.; Zhang, G.; Ma, J.; Chen, Y., Control of spiral waves and spatiotemporal chaos with periodical subthreshold ordered wave perturbations, Int. J. Mod. Phys. C, 20, 1, 85-96 (2009) · Zbl 1155.93360
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.