×

Predictive Dirac neutrino spectrum with strong CP solution in \(\mathrm{SU}(5)_L\times\mathrm{SU}(5)_R\) unification. (English) Zbl 07865619

Summary: We develop a grand unified theory of matter and forces based on the gauge symmetry \(\mathrm{SU}(5)_L\times\mathrm{SU}(5)_R\) with parity interchanging the two factor groups. Our main motivation for such a construction is to realize a minimal GUT embedding of left-right symmetric models that provide a parity solution to the strong CP problem without the axion. We show how the gauge couplings unify with an intermediate gauge symmetry \(\mathrm{SU}(3)_{cL}\times\mathrm{SU}(2)_{2L}\times\mathrm{U}(1)_L \times\mathrm{SU}(5)_R\), and establish its consistency with proton decay constraints. The model correctly reproduces the observed fermion masses and mixings and leads to naturally light Dirac neutrinos with their Yukawa couplings suppressed by a factor \(M_I/M_G\), the ratio of the intermediate scale to the GUT scale. We call this mechanism type II-Dirac seesaw. Furthermore, the model predicts \(\delta_{CP} = \pm (130.4 \pm 1.2)^\circ\) and \(m_{\nu_1} = (4.8\text{--}8.4)\) meV for the Dirac CP phase and the lightest neutrino mass. We demonstrate how the model solves the strong CP problem via parity symmetry.

MSC:

81-XX Quantum theory

Software:

Sym2Int

References:

[1] J.C. Pati and A. Salam, Lepton Number as the Fourth Color, Phys. Rev. D10 (1974) 275 [INSPIRE].
[2] H. Georgi and S.L. Glashow, Unity of All Elementary Particle Forces, Phys. Rev. Lett.32 (1974) 438 [INSPIRE].
[3] H. Georgi, H.R. Quinn and S. Weinberg, Hierarchy of Interactions in Unified Gauge Theories, Phys. Rev. Lett.33 (1974) 451 [INSPIRE].
[4] A. Davidson and K.C. Wali, SU(5)_L × SU(5)_R Hybrid Unification, Phys. Rev. Lett.58 (1987) 2623 [INSPIRE].
[5] P.L. Cho, Unified universal seesaw models, Phys. Rev. D48 (1993) 5331 [hep-ph/9304223] [INSPIRE].
[6] R.N. Mohapatra, SU(5) × SU(5) unification, seesaw mechanism and R conservation, Phys. Lett. B379 (1996) 115 [hep-ph/9601203] [INSPIRE].
[7] Lee, C-H; Mohapatra, RN, Vector-Like Quarks and Leptons, SU(5) ⨂ SU(5) Grand Unification, and Proton Decay, JHEP, 02, 080, 2017 · Zbl 1377.81251 · doi:10.1007/JHEP02(2017)080
[8] D. Emmanuel-Costa, E.T. Franco and R. Gonzalez Felipe, SU(5)xSU(5) unification revisited, JHEP08 (2011) 017 [arXiv:1104.2046] [INSPIRE].
[9] Z. Tavartkiladze, Twin-unified SU(5) × SU(5)^′GUT and phenomenology, Pramana86 (2016) 281 [INSPIRE].
[10] S.J. Lonsdale and R.R. Volkas, Grand unified hidden-sector dark matter, Phys. Rev. D90 (2014) 083501 [Erratum ibid.91 (2015) 129906] [arXiv:1407.4192] [INSPIRE].
[11] K.S. Babu and R.N. Mohapatra, A Solution to the Strong CP Problem Without an Axion, Phys. Rev. D41 (1990) 1286 [INSPIRE].
[12] Hall, LJ; Harigaya, K., Implications of Higgs Discovery for the Strong CP Problem and Unification, JHEP, 10, 130, 2018 · doi:10.1007/JHEP10(2018)130
[13] Hall, LJ; Harigaya, K., Higgs Parity Grand Unification, JHEP, 11, 033, 2019 · doi:10.1007/JHEP11(2019)033
[14] Dunsky, D.; Hall, LJ; Harigaya, K., Sterile Neutrino Dark Matter and Leptogenesis in Left-Right Higgs Parity, JHEP, 01, 125, 2021 · doi:10.1007/JHEP01(2021)125
[15] Harigaya, K.; Wang, IR, Baryogenesis in a parity solution to the strong CP problem, JHEP, 11, 189, 2023 · doi:10.1007/JHEP11(2023)189
[16] J. Carrasco-Martinez, D.I. Dunsky, L.J. Hall and K. Harigaya, Leptogenesis in Parity Solutions to the Strong CP Problem and Standard Model Parameters, arXiv:2307.15731 [INSPIRE].
[17] N. Craig, I. Garcia Garcia, G. Koszegi and A. McCune, P not PQ, JHEP09 (2021) 130 [arXiv:2012.13416] [INSPIRE].
[18] J. de Vries, P. Draper and H.H. Patel, Do Minimal Parity Solutions to the Strong CP Problem Work?, arXiv:2109.01630 [INSPIRE].
[19] Dcruz, R.; Babu, KS, Resolving W boson mass shift and CKM unitarity violation in left-right symmetric models with a universal seesaw mechanism, Phys. Rev. D, 108, 2023 · doi:10.1103/PhysRevD.108.095011
[20] Babu, KS; Mohapatra, RN; Okada, N., Parity solution to the strong CP problem and a unified framework for inflation, baryogenesis, and dark matter, JHEP, 01, 136, 2024 · doi:10.1007/JHEP01(2024)136
[21] Bonnefoy, Q.; Hall, L.; Manzari, CA; Scherb, C., Colorful Mirror Solution to the Strong CP Problem, Phys. Rev. Lett., 131, 2023 · doi:10.1103/PhysRevLett.131.221802
[22] M.A.B. Beg and H.-S. Tsao, Strong P, T Noninvariances in a Superweak Theory, Phys. Rev. Lett.41 (1978) 278 [INSPIRE].
[23] R.N. Mohapatra and G. Senjanovic, Natural Suppression of Strong p and t Noninvariance, Phys. Lett. B79 (1978) 283 [INSPIRE].
[24] R.N. Mohapatra and A. Rasin, Simple supersymmetric solution to the strong CP problem, Phys. Rev. Lett.76 (1996) 3490 [hep-ph/9511391] [INSPIRE].
[25] R. Kuchimanchi, Solution to the strong CP problem: Supersymmetry with parity, Phys. Rev. Lett.76 (1996) 3486 [hep-ph/9511376] [INSPIRE].
[26] R.N. Mohapatra, A. Rasin and G. Senjanovic, P, C and strong CP in left-right supersymmetric models, Phys. Rev. Lett.79 (1997) 4744 [hep-ph/9707281] [INSPIRE].
[27] K.S. Babu, B. Dutta and R.N. Mohapatra, Solving the strong CP and the SUSY phase problems with parity symmetry, Phys. Rev. D65 (2002) 016005 [hep-ph/0107100] [INSPIRE].
[28] Kuchimanchi, R., P and CP solution of the strong CP puzzle, Phys. Rev. D, 108, 2023 · doi:10.1103/PhysRevD.108.095023
[29] S.L. Glashow, Trinification of All Elementary Particle Forces, in the proceedings of the Fifth Workshop on Grand Unification, Providence, U.S.A., April 12-14 (1984) [INSPIRE].
[30] K.S. Babu, X.-G. He and S. Pakvasa, Neutrino Masses and Proton Decay Modes in SU(3) × SU(3) × SU(3) Trinification, Phys. Rev. D33 (1986) 763 [INSPIRE].
[31] K.S. Babu, E. Ma and S. Willenbrock, Quark lepton quartification, Phys. Rev. D69 (2004) 051301 [hep-ph/0307380] [INSPIRE].
[32] Babu, KS; Barr, SM; Gogoladze, I., Family Unification with SO(10), Phys. Lett. B, 661, 124, 2008 · doi:10.1016/j.physletb.2008.01.057
[33] M. Fernández Navarro, S.F. King and A. Vicente, Tri-unification: a separate SU(5) for each fermion family, arXiv:2311.05683 [INSPIRE].
[34] A. Davidson and K.C. Wali, Universal Seesaw Mechanism?, Phys. Rev. Lett.59 (1987) 393 [INSPIRE].
[35] Z.G. Berezhiani, Horizontal Symmetry and Quark - Lepton Mass Spectrum: The SU(5) × SU(3)_H Model, Phys. Lett. B150 (1985) 177 [INSPIRE].
[36] K.S. Babu and X.G. He, Dirac Neutrino Masses as Two Loop Radiative Corrections, Mod. Phys. Lett. A4 (1989) 61 [INSPIRE].
[37] Babu, KS; He, X-G; Su, M.; Thapa, A., Naturally light Dirac and pseudo-Dirac neutrinos from left-right symmetry, JHEP, 08, 140, 2022 · Zbl 1522.81757 · doi:10.1007/JHEP08(2022)140
[38] Fonseca, RM, The Sym2Int program: going from symmetries to interactions, J. Phys. Conf. Ser., 873, 2017 · doi:10.1088/1742-6596/873/1/012045
[39] M. Abud, G. Anastaze, P. Eckert and H. Ruegg, Counter example to Michel’s conjecture, Phys. Lett. B142 (1984) 371 [INSPIRE].
[40] T. Hubsch and S. Pallua, Symmetry Breaking Mechanism in an Alternative SU(5) Model, Phys. Lett. B138 (1984) 279 [INSPIRE].
[41] G. Senjanovic and R.N. Mohapatra, Exact Left-Right Symmetry and Spontaneous Violation of Parity, Phys. Rev. D12 (1975) 1502 [INSPIRE].
[42] Z.G. Berezhiani, The Weak Mixing Angles in Gauge Models with Horizontal Symmetry: A New Approach to Quark and Lepton Masses, Phys. Lett. B129 (1983) 99 [INSPIRE].
[43] S. Dimopoulos and H.M. Georgi, Extended Survival Hypothesis and Fermion Masses, Phys. Lett. B140 (1984) 67 [INSPIRE].
[44] H. Georgi, Towards a Grand Unified Theory of Flavor, Nucl. Phys. B156 (1979) 126 [INSPIRE].
[45] R.N. Mohapatra and G. Senjanovic, Higgs Boson Effects in Grand Unified Theories, Phys. Rev. D27 (1983) 1601 [INSPIRE].
[46] Berbig, M., Type II Dirac seesaw portal to the mirror sector: Connecting neutrino masses and a solution to the strong CP problem, Phys. Rev. D, 106, 2022 · doi:10.1103/PhysRevD.106.115018
[47] Bonilla, C.; Lamprea, JM; Peinado, E.; Valle, JWF, Flavour-symmetric type-II Dirac neutrino seesaw mechanism, Phys. Lett. B, 779, 257, 2018 · doi:10.1016/j.physletb.2018.02.022
[48] Z.G. Berezhiani and R.N. Mohapatra, Reconciling present neutrino puzzles: Sterile neutrinos as mirror neutrinos, Phys. Rev. D52 (1995) 6607 [hep-ph/9505385] [INSPIRE].
[49] P.-H. Gu and H.-J. He, Neutrino Mass and Baryon Asymmetry from Dirac Seesaw, JCAP12 (2006) 010 [hep-ph/0610275] [INSPIRE].
[50] K.S. Babu and S.M. Barr, Realistic quark and lepton masses through SO(10) symmetry, Phys. Rev. D56 (1997) 2614 [hep-ph/9512389] [INSPIRE].
[51] Sartore, L.; Schienbein, I., PyR@TE 3, Comput. Phys. Commun., 261, 2021 · Zbl 1523.81131 · doi:10.1016/j.cpc.2020.107819
[52] Poole, C.; Thomsen, AE, Constraints on 3- and 4-loop β-functions in a general four-dimensional Quantum Field Theory, JHEP, 09, 055, 2019 · Zbl 1423.81128 · doi:10.1007/JHEP09(2019)055
[53] Esteban, I., The fate of hints: updated global analysis of three-flavor neutrino oscillations, JHEP, 09, 178, 2020 · doi:10.1007/JHEP09(2020)178
[54] Huang, G-Y; Zhou, S., Precise Values of Running Quark and Lepton Masses in the Standard Model, Phys. Rev. D, 103, 2021 · doi:10.1103/PhysRevD.103.016010
[55] Aoki, S., 1 + 1 + 1 flavor QCD + QED simulation at the physical point, Phys. Rev. D, 86, 2012 · doi:10.1103/PhysRevD.86.034507
[56] P. Langacker, Grand Unified Theories and Proton Decay, Phys. Rept.72 (1981) 185 [INSPIRE].
[57] K.S. Babu et al., Working Group Report: Baryon Number Violation, in the proceedings of the Snowmass 2013: Snowmass on the Mississippi, Minneapolis, U.S.A., July 29 - August 06 (2013) [arXiv:1311.5285] [INSPIRE].
[58] Dev, PSB, Searches for baryon number violation in neutrino experiments: a white paper, J. Phys. G, 51, 2024 · doi:10.1088/1361-6471/ad1658
[59] R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett.38 (1977) 1440 [INSPIRE].
[60] S. Weinberg, A New Light Boson?, Phys. Rev. Lett.40 (1978) 223 [INSPIRE].
[61] F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett.40 (1978) 279 [INSPIRE].
[62] J.E. Kim, Weak Interaction Singlet and Strong CP Invariance, Phys. Rev. Lett.43 (1979) 103 [INSPIRE].
[63] M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Can Confinement Ensure Natural CP Invariance of Strong Interactions?, Nucl. Phys. B166 (1980) 493 [INSPIRE].
[64] M. Dine, W. Fischler and M. Srednicki, A Simple Solution to the Strong CP Problem with a Harmless Axion, Phys. Lett. B104 (1981) 199 [INSPIRE].
[65] A.R. Zhitnitsky, On Possible Suppression of the Axion Hadron Interactions (in Russian), Sov. J. Nucl. Phys.31 (1980) 260 [INSPIRE].
[66] Kamionkowski, M.; March-Russell, J., Planck scale physics and the Peccei-Quinn mechanism, Phys. Lett. B, 282, 137, 1992 · doi:10.1016/0370-2693(92)90492-M
[67] S.M. Barr and D. Seckel, Planck scale corrections to axion models, Phys. Rev. D46 (1992) 539 [INSPIRE].
[68] R. Holman et al., Solutions to the strong CP problem in a world with gravity, Phys. Lett. B282 (1992) 132 [hep-ph/9203206] [INSPIRE].
[69] Z.G. Berezhiani, R.N. Mohapatra and G. Senjanovic, Planck scale physics and solutions to the strong CP problem without axion, Phys. Rev. D47 (1993) 5565 [hep-ph/9212318] [INSPIRE].
[70] Dragos, J., Confirming the Existence of the strong CP Problem in Lattice QCD with the Gradient Flow, Phys. Rev. C, 103, 2021 · doi:10.1103/PhysRevC.103.015202
[71] Particle Data Group collaboration, Review of Particle Physics, PTEP2022 (2022) 083C01 [INSPIRE].
[72] Hisano, J.; Kitahara, T.; Osamura, N.; Yamada, A., Novel loop-diagrammatic approach to QCD θ parameter and application to the left-right model, JHEP, 03, 150, 2023 · doi:10.1007/JHEP03(2023)150
[73] R. Alarcon et al., Electric dipole moments and the search for new physics, in the proceedings of the Snowmass 2021, Seattle, U.S.A., July 17-26 (2022) [arXiv:2203.08103] [INSPIRE].
[74] R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: An alternative road to LHC physics, Phys. Rev. D74 (2006) 015007 [hep-ph/0603188] [INSPIRE].
[75] K. Dick, M. Lindner, M. Ratz and D. Wright, Leptogenesis with Dirac neutrinos, Phys. Rev. Lett.84 (2000) 4039 [hep-ph/9907562] [INSPIRE].
[76] CMS collaboration, Search for single production of a heavy vector-like T quark decaying to a Higgs boson and a top quark with a lepton and jets in the final state, Phys. Lett. B771 (2017) 80 [arXiv:1612.00999] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.