×

Littlewood-type theorems for Hardy spaces in infinitely many variables. (English) Zbl 07863195

Summary: Littlewood’s theorem is one of the pioneering results in random analytic functions over the open unit disk. In this paper, we prove some analogues of this theorem for Hardy spaces in infinitely many variables. Our results not only cover finite-variable setting, but also apply in cases of Dirichlet series.

MSC:

46E50 Spaces of differentiable or holomorphic functions on infinite-dimensional spaces
30B50 Dirichlet series, exponential series and other series in one complex variable
32A35 \(H^p\)-spaces, Nevanlinna spaces of functions in several complex variables

References:

[1] Anderson, J. M.; Clunie, J.; Pommerenke, C., On Bloch functions and normal functions, J. Reine Angew. Math., 270, 12-37, 1974 · Zbl 0292.30030
[2] Aleman, A.; Olsen, J.; Saksman, E., Fatou and brothers Riesz theorems in the infinite-dimensional polydisc, J. Anal. Math., 137, 429-447, 2019 · Zbl 1431.46021
[3] Bayart, F., Hardy spaces of Dirichlet series and their composition operators, Monatshefte Math., 136, 203-236, 2002 · Zbl 1076.46017
[4] Besicovitch, A., Almost Periodic Functions, 1954, Dover Publications, Inc.: Dover Publications, Inc. New York
[5] Billard, P., Séries de Fourier aléatoirement bornées, continues, uniformément convergentes, Ann. Sci. Éc. Norm. Supér., 82, 131-179, 1965 · Zbl 0134.34102
[6] Bohr, H., Über die Bedeutung der Potenzreihen unendlich vieler Variabeln in der Theorie der Dirichletschen Reien \(\sum a_n / n^s\), Nachr. Ges. Wiss. Gött., Math.-Phys. Kl., A9, 441-488, 1913 · JFM 44.0306.01
[7] Bondarenko, A.; Brevig, O.; Saksman, E.; Seip, K., Linear space properties of \(H^p\) spaces of Dirichlet series, Trans. Am. Math. Soc., 372, 6677-6702, 2019 · Zbl 1432.30036
[8] Bayart, F.; Defant, A.; Frerick, L.; Maestre, M.; Sevilla-Peris, P., Multipliers of Dirichlet series and monomial series expansions of holomorphic functions in infinitely many variables, Math. Ann., 368, 837-876, 2017 · Zbl 1371.46031
[9] Christensen, O., An introduction to frames and Riesz bases, (Applied and Numerical Harmonic Analysis, 2016, Birkhäuser/Springer) · Zbl 1348.42033
[10] Cheng, G.; Fang, X.; Guo, K.; Liu, C., A Gaussian version of Littlewood’s theorem for random power series, Proc. Am. Math. Soc., 150, 3525-3536, 2022 · Zbl 1502.30008
[11] Cheng, G.; Fang, X.; Liu, C., A Littlewood-type theorem for random Bergman functions, Int. Math. Res. Not., 14, 1-36, 2022, (11056-11091 on table of contents) · Zbl 1494.30003
[12] Cole, B.; Gamelin, T., Representing measures and Hardy spaces for the infinite polydisk algebra, Proc. Lond. Math. Soc. (3), 53, 112-142, 1986 · Zbl 0624.46032
[13] Dineen, S., Complex analysis in locally convex spaces, (North-Holland Mathematics Studies, vol. 57. North-Holland Mathematics Studies, vol. 57, Amsterdam, New York, 1981) · Zbl 0484.46044
[14] Duren, P., Random series and bounded mean oscillation, Mich. Math. J., 32, 81-86, 1985 · Zbl 0565.30001
[15] Dan, H.; Guo, K., The periodic dilation completeness problem: cyclic vectors in the Hardy space over the infinite-dimensional polydisk, J. Lond. Math. Soc. (2), 103, 1-34, 2021 · Zbl 1465.42039
[16] Dan, H.; Guo, K.; Huang, H., Submodules of the Hardy module in infinitely many variables, J. Oper. Theory, 80, 375-397, 2018 · Zbl 07002405
[17] Defant, A.; Garcia, D.; Maestre, M.; Sevilla-Peris, P., Dirichlet Series and Holomorphic Functions in High Dimensions, New Mathematical Monographs, vol. 37, 2019, Cambridge University Press: Cambridge University Press Cambridge · Zbl 1460.30004
[18] Defant, A.; Maestre, M.; Prengel, C., Domains of convergence for monomial expansions of holomorphic functions in infinitely many variables, J. Reine Angew. Math., 634, 13-49, 2009 · Zbl 1180.32002
[19] Gao, F., A characterization of random Bloch functions, J. Math. Anal. Appl., 252, 959-966, 2000 · Zbl 0973.30027
[20] Guo, K.; Yan, F., Toeplitz operators on the Hardy space over the infinite-dimensional polydisc, Acta Sci. Math. (Szeged), 88, 223-262, 2022 · Zbl 1513.47055
[21] Jevtić, M.; Jovanović, I., Coefficient multipliers of mixed norm spaces, Can. Math. Bull., 36, 283-285, 1993 · Zbl 0801.30002
[22] Jevtić, M.; Vukotić, D.; Arsenović, M., Taylor Coefficients and Coefficient Multipliers of Hardy and Bergman-Type Spaces, RSME Springer Series, vol. 2, 2016, Springer: Springer Cham · Zbl 1368.30001
[23] Kahane, J.-P., Some Random Series of Functions, Cambridge Stud. Adv. Math., vol. 5, 1985, Cambridge University Press: Cambridge University Press Cambridge · Zbl 0571.60002
[24] Konyagin, S.; Queffélec, H.; Saksman, E.; Seip, K., Riesz projection and bounded mean oscillation for Dirichlet series, Stud. Math., 262, 121-149, 2022 · Zbl 1483.30009
[25] Le Gall, J.-F., Brownian Motion, Martingales, and Stochastic Calculus, 2016, Springer, Translated from the 2013 French edition · Zbl 1378.60002
[26] Littlewood, J. E., On mean values of power series, Proc. Lond. Math. Soc., 25, 328-337, 1926 · JFM 52.0314.02
[27] Littlewood, J. E., Mathematical notes (13): on mean values of power series (II), J. Lond. Math. Soc., 5, 179-182, 1930 · JFM 56.0267.01
[28] Li, D.; Queffélec, H., Introduction to Banach Spaces: Analysis and Probability, vol. 2, Cambridge Studies in Advanced Mathematics, vol. 167, 2018, Cambridge University Press: Cambridge University Press Cambridge · Zbl 1404.46002
[29] Ledoux, M.; Talagrand, M., Probability in Banach Spaces: Isoperimetry and Processes, Classics in Mathematics, 2011, Springer-Verlag: Springer-Verlag Berlin, Reprint of the 1991 edition · Zbl 1226.60003
[30] Marcus, M. B.; Pisier, G., Necessary and Sufficient Conditions for the Uniform Convergence of Random Trigonometric Series, Lecture Notes Series. Matematisk, vol. 50, 1978, Institut, Aarhus Universitet: Institut, Aarhus Universitet Aarhus · Zbl 0409.60036
[31] Marcus, M. B.; Pisier, G., Random Fourier Series with Applications to Harmonic Analysis, Annals of Mathematics Studies, vol. 101, 1981, Princeton: Princeton Tokyo · Zbl 0474.43004
[32] Nikolski, N., In a shadow of the RH: cyclic vectors of Hardy spaces on the Hilbert multidisc, Ann. Inst. Fourier (Grenoble), 62, 1601-1626, 2012 · Zbl 1267.30108
[33] Paley, R. E.A. C.; Wiener, N.; Zygmund, A., Notes on random functions, Math. Z., 37, 647-668, 1933 · Zbl 0007.35402
[34] Paley, R. E.A. C.; Zygmund, A., On some series of functions (1), Math. Proc. Camb. Philos. Soc., 26, 337-357, 1930 · JFM 56.0254.01
[35] Queffélec, H.; Queffélec, M., Diophantine Approximation and Dirichlet Series, Texts and Readings in Mathematics, vol. 80, 2020, Hindustan Book Agency: Hindustan Book Agency New Delhi, Springer, Singapore · Zbl 1478.11002
[36] Scheidemann, V., Introduction to Complex Analysis in Several Variables, 2005, Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 1085.32001
[37] Sledd, W. T., Random series which are BMO or Bloch, Mich. Math. J., 28, 259-266, 1981 · Zbl 0461.42010
[38] Salem, R.; Zygmund, A., Some properties of trigonometric series whose terms have random signs, Acta Math., 91, 245-301, 1954 · Zbl 0056.29001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.