×

Domains of convergence for monomial expansions of holomorphic functions in infinitely many variables. (English) Zbl 1180.32002

Let \(\mathcal{F}(R)\) be the set of holomorphic functions on a Reinhardt domain \(R\) in a Banach sequence space. If \(f\in\mathcal{F}(R)\), then \(f\) has a monomial expansion of the form \(\sum_{\alpha}\frac{\partial^{\alpha}f(0)}{\alpha!}z^{\alpha}\).
Denote by \(\mathrm{dom}\mathcal{F}(R)\) the domain of convergence of \(\mathcal{F}(R)\), that is the set of all elements \(z\in R\) for which the monomial expansion of each function \(f\in\mathcal{F}(R)\) converges.
In the paper, the authors give a systematic study of the sets \(\mathrm{dom}\mathcal{F}(R)\).

MSC:

32A10 Holomorphic functions of several complex variables
32A07 Special domains in \({\mathbb C}^n\) (Reinhardt, Hartogs, circular, tube) (MSC2010)
Full Text: DOI

References:

[1] DOI: 10.1090/S0002-9939-99-05084-4 · Zbl 0948.32001 · doi:10.1090/S0002-9939-99-05084-4
[2] Boas H. P., J. Korean Math. Soc. 37 pp 321– (2000)
[3] DOI: 10.1090/S0002-9939-97-04270-6 · Zbl 0888.32001 · doi:10.1090/S0002-9939-97-04270-6
[4] Bohnenblust H. F., Ann. Math. 32 pp 600– (2) · Zbl 0001.26901 · doi:10.2307/1968255
[5] Boland P. J., Bull. Soc. Math. France 106 pp 311– (1978)
[6] DOI: 10.1155/S1073792804143444 · Zbl 1069.30001 · doi:10.1155/S1073792804143444
[7] DOI: 10.1023/A:1011466509838 · Zbl 0994.47036 · doi:10.1023/A:1011466509838
[8] DOI: 10.1006/jfan.2000.3702 · Zbl 0986.46031 · doi:10.1006/jfan.2000.3702
[9] DOI: 10.1007/BF02771973 · Zbl 1124.32003 · doi:10.1007/BF02771973
[10] Defant A., Math. 557 pp 173– (2003)
[11] DOI: 10.1016/j.jat.2004.04.002 · Zbl 1049.32001 · doi:10.1016/j.jat.2004.04.002
[12] Defant A., J. Korean. Math. Soc. 41 pp 209– (2004) · Zbl 1050.32003 · doi:10.4134/JKMS.2004.41.1.209
[13] Defant A., Houston J. Math. 33 pp 839– (2007)
[14] DOI: 10.1093/qmath/hah022 · Zbl 1120.46025 · doi:10.1093/qmath/hah022
[15] DOI: 10.1093/qmath/ham028 · Zbl 1147.32002 · doi:10.1093/qmath/ham028
[16] DOI: 10.1016/S0304-0208(01)80035-9 · doi:10.1016/S0304-0208(01)80035-9
[17] Dineen S., Studia Math. 73 pp 11– (1982)
[18] Dineen S., Studia Math. 94 pp 227– (1989)
[19] Dineen S., Bull. Soc. Roy. Sci. Liège 60 pp 401– (1991)
[20] DOI: 10.1002/mana.19931610113 · Zbl 0797.46037 · doi:10.1002/mana.19931610113
[21] DOI: 10.1093/qmath/os-5.1.241 · Zbl 0010.36101 · doi:10.1093/qmath/os-5.1.241
[22] DOI: 10.1007/BF03019645 · JFM 40.0391.02 · doi:10.1007/BF03019645
[23] DOI: 10.1006/jmaa.1998.6089 · Zbl 0915.46005 · doi:10.1006/jmaa.1998.6089
[24] Lempert L., Ann. Inst. Fourier 49 pp 1293– (1999)
[25] DOI: 10.1090/S0894-0347-99-00296-9 · Zbl 0926.32048 · doi:10.1090/S0894-0347-99-00296-9
[26] Lempert L., Ann. Inst. Fourier 50 pp 423– (2000)
[27] DOI: 10.1093/qmath/os-1.1.164 · JFM 56.0335.01 · doi:10.1093/qmath/os-1.1.164
[28] Matos M. C., Portug. Math. 45 pp 429– (1988)
[29] DOI: 10.1016/0001-8708(92)90066-T · Zbl 0747.46037 · doi:10.1016/0001-8708(92)90066-T
[30] DOI: 10.2307/2000870 · Zbl 0637.46045 · doi:10.2307/2000870
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.