×

A spectral method with volume penalization for a nonlinear peridynamic model. (English) Zbl 07863088

Summary: The peridynamic equation consists in an integro-differential equation of the second order in time which has been proposed for modeling fractures and damages in the context of nonlocal continuum mechanics. In this article, we study numerical methods for the one-dimension nonlinear peridynamic problems. In particular we consider spectral Fourier techniques for the spatial domain while we will use the Störmer-Verlet method for the time discretization. In order to overcome the limitation of working on periodic domains due to the spectral techniques we will employ a volume penalization method. The performance of our approach is validated with the study of the convergence with respect to the spatial discretization and the volume penalization. Several tests have been performed to investigate the properties of the solutions.
{© 2020 John Wiley & Sons Ltd}

MSC:

74Hxx Dynamical problems in solid mechanics
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
74Bxx Elastic materials
Full Text: DOI

References:

[1] SillingSA. Reformulation of elasticity theory for discontinuities and long‐range forces. J Mech Phys Solids. 2000;48(17-18):175‐209. · Zbl 0970.74030
[2] LiptonR. Dynamic brittle fracture as a small horizon limit of peridynamics. J Elast. 2014;117:21‐50. · Zbl 1309.74065
[3] QiangD, YunzheT, XiaochuanT. A peridynamic model of fracture mechanics with bond‐breaking. J Elast. 2018;132(2):197‐218. · Zbl 1395.74041
[4] LiptonR, SaidE, JhaP. Free damage propagation with memory. J Elast. 2018;133(2):129‐153. · Zbl 1403.74080
[5] BeyerHR, AksoyluB, CelikerF. On a class of nonlocal wave equations from applications. J Math Phys. 2016;57:062902. · Zbl 1342.74088
[6] SillingSA, BobaruF. Peridynamic modeling of membranes and fibers. Int J Non‐Linear Mech. 2005;40(2):395‐409. · Zbl 1349.74231
[7] EringenAC. Nonlocal Continuum Field Theories. New York, NY; Berlin, Heidelberg/Germany: Springer‐Verlag; 2002. · Zbl 1023.74003
[8] EringenAC, EdelenDGB. On nonlocal elasticity. Int J Eng Sci. 1972;10(3):233‐248. · Zbl 0247.73005
[9] HafeziMH, AlebrahimR, KunduT. Crack propagation modeling using peridynamic theory. Health Monitoring of Structural and Biological Systems. Proceedings of SPIE ‐ The International Society for Optical Engineering Vol 9805. Las Vegas: SPIE; 2016:209‐216.
[10] WecknerO, AbeyaratneR. The effect of long‐range forces on the dynamics of a bar. J Mech Phys Solids. 2005;53(3):705‐728. · Zbl 1122.74431
[11] EmmrichE, PuhstD. Well‐posedness of the peridynamic model with Lipschitz continuous pairwise force function. Commun Math Sci. 2013;11(4):1039‐1049. · Zbl 1434.74016
[12] BobaruF, YangM, AlvesLF, SillingSA, AskariE, XuJ. Convergence, adaptive refinement, and slaning in 1D peridynamics. Int J Numer Mech Eng. 2009;77:852‐877. · Zbl 1156.74399
[13] EmmrichE, PuhstD. Survey of existence results in nonlinear peridynamics in comparison with local elastodynamics. Comput Methods Appl Math. 2015;15(4):483‐496. · Zbl 1327.74003
[14] ErbayHA, ErkipA, MusluGM. The Cauchy problem for a one‐dimensional nonlinear elastic peridynamic model. J Differ Equ. 2012;252(8):4392‐4409. · Zbl 1234.35266
[15] CocliteGM, DipierroS, MaddalenaF, ValdinociE. Wellposedness of a nonlinear peridynamic model. Nonlinearity. 2018;32(1):1‐21. · Zbl 1404.74102
[16] SillingS, AskariE. A meshfree based on the peridynamic model of solid mechanics. Comput Struct. 2005;83(17-18):1526‐1535.
[17] CocliteGM, FanizziA, LopezL, MaddalenaF, PellegrinoSF. Numerical methods for the nonlocal wave equation of the peridynamics. Appl Numer Math. 2020;155:119‐139. · Zbl 1436.65195
[18] EmmrichE, WecknerO. Numerical simulation of the dynamics of a nonlocal, inhomogeneous infinite bar. J Comput Appl Mech. 2005;6(2):311‐319. · Zbl 1097.74036
[19] EmmrichE, WecknerO. The peridynamic equations and its spatial discretization. Math Model Anal. 2007;12(1):17‐27. · Zbl 1121.65073
[20] MacekRW, SillingSA. Peridynamics via finite element analysis. Finite Elem Anal Des. 2007;43(15):1169‐1178.
[21] ZaccariottoM, MudricT, TomasiD, ShojaeiA, GalvanettoU. Coupling of FEM meshes with peridynamic grids. Comput Methods Appl Mech Eng. 2018;330:471‐497. · Zbl 1439.65103
[22] KilicB, MadenciE. Coupling of peridynamic theory and the finite element method. J Mech Mater Struct. 2010;5(5):703‐733.
[23] JafarzadehS, LariosA, BobaruF. Efficient solutions for nonlocal diffusion problems via boundary‐adapted spectral methods. J Peridyn Nonlocal Model. 2020;2:85‐110.
[24] CanutoC, HussainiMY, QuarteroniA, ZangTA. Spectral Methods in Fluid Dynamics. Berlin, Heidelberg/Germany: Springer‐Verlag; 2012.
[25] LeQ, BobaruF. Surface corrections for peridynamic models in elasticity and fracture. Comput Mech. 2018;61:499‐518. · Zbl 1446.74084
[26] DuQ, GunzburgerM, LehoucqRB, ZhouK. A nonlocal vector calculus, nonlocal volume‐constrained problems and nonlocal balance laws. Math Models Methods Appl Sci. 2013;23(3):493‐540. · Zbl 1266.26020
[27] ShojaeiA, MudricT, ZaccariottoM, GalvanettoU. A coupled meshless finite point/peridynamic method for 2D dynamic fracture analysis. Int J Mech Sci. 2016;119:419‐431.
[28] FaccioliE, MaggioF, PaolucciR, QuarteroniA. 2D and 3D elastic wave propagation by a pseudo‐spectral domain decomposition method. J Seismol. 1997;1:237‐251.
[29] AlebrahimR. Peridynamic modeling of Lamb wave propagation in bimaterial plates. Compos Struct. 2019;214:12‐22.
[30] EmmrichE, WecknerO. Analysis and numerical approximation of an integro‐differential equation modeling non‐local effects in linear elasticity. Math Mech Solids. 2007;12(4):363‐384. · Zbl 1175.74013
[31] ZhaoW, HonYC. An accurate and efficient numerical method for solving linear peridynamic models. Appl Math Model. 2019;74:113‐131. · Zbl 1481.65200
[32] CanutoC, HussainiMY, QuarteroniA, ZangTA. Spectral Methods: Fundamentals in Single Domains. Berlin, Heidelberg/Germany: Springer‐Verlag; 2006. · Zbl 1093.76002
[33] RudinW. Real and Complex Analysis. 3rd ed.New York, NY: McGraw‐Hill, Inc; 1987. · Zbl 0925.00005
[34] CanutoC, QuarteroniA. Approximation results for orthogonal polynomials in Sobolev spaces. Math Comput. 1982;38:67‐86. · Zbl 0567.41008
[35] OterkusS, MadenciE, AgwaiA. Peridynamic thermal diffusion. J Comput Phys. 2014;265:71‐96. · Zbl 1349.80020
[36] HairerE, LubichC, WannerG. Geometric numerical integration illustrated by the Störmer‐Verlet method. Acta Numerica. 2003;12:399‐450. · Zbl 1046.65110
[37] LapidusL, PinderGF. Numerical Solution of Partial Differential Equations in Science Engineering. New York, NY: Wiley; 2003.
[38] MortonKW, MayersDF. Numerical Solution of Partial Differential Equations. Cambridge, MA: Cambridge University Press; 1994. · Zbl 0811.65063
[39] Dal SantoE, DonadelloC, PellegrinoSF, RosiniMD. Representation of capacity drop at a road merge via point constraints in a first order traffic model. ESAIM Math Modell Numer Anal. 2019;53(1):1‐34. · Zbl 1420.35156
[40] CocliteGM, PaparellaF, PellegrinoSF. On a salt fingers model. Nonlinear Anal. 2018;176:100‐116. · Zbl 1397.35141
[41] Beirao Da VeigaL, LopezL, VaccaG. Mimetic finite difference methods for Hamiltonian wave equations in 2D. Comput Math Appl. 2017;74(5):1123‐1141. · Zbl 1448.65092
[42] LopezL, VaccaG. Spectral properties and conservation laws in mimetic finite difference methods for PDEs. J Comput Appl Math. 2016;292(15):760‐784. · Zbl 1329.65250
[43] BerardiM, DifonzoF, VurroM, LopezL. The 1D Richards’ equation in two layered soils: a Filippov approach to treat discontinuities. Adv Water Resour. 2018;115:264‐272.
[44] BerardiB, DifonzoF, LopezL. A mixed MoL‐TMoL for the numerical solution of the 2D Richard’s equation in layered soils. Comput Math Appl. 2020;79(7):1990‐2001. · Zbl 1459.76115
[45] PellegrinoSF. On the implementation of a finite volumes scheme with monotone transmission conditions for scalar conservation laws on a star‐shaped network. Appl Numer Math. 2020;155:181‐191. · Zbl 1436.65126
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.