×

A mixed MoL-TMoL for the numerical solution of the 2D Richards’ equation in layered soils. (English) Zbl 1459.76115

Summary: Water infiltration into layered soils is studied, considering a two dimensional spatial domain. The focus is on the treatment of discontinuity at the intersection of non-overlapping soils. The novelty of this paper is based on a mixed MoL-TMoL, which merges desirable features of both Method of Lines (MoL) and Transversal Method of Lines (TMoL); such a numerical approach allows us the numerical treatment of the solution at the discontinuous interfaces by means of Filippov theory for dynamical systems. Numerical simulations, based on implicit and semi-implicit schemes of low accuracy, are provided for validating this approach.

MSC:

76M99 Basic methods in fluid mechanics
76S05 Flows in porous media; filtration; seepage
65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
86A05 Hydrology, hydrography, oceanography
Full Text: DOI

References:

[1] Portoghese, I.; Iacobellis, V.; Sivapalan, M., Analysis of soil and vegetation patterns in semi-arid mediterranean landscapes by way of a conceptual water balance model, Hydrol. Earth Syst. Sci., 12, 12, 899-911 (2008)
[2] Gardner, W. R., Modeling water uptake by roots, Irrig. Sci., 12, 3, 109-114 (1991)
[3] P. Broadbridge, E. Daly, J. Goard, Exact solutions of the Richards’ equation with nonlinear plant-root extraction, Water Resour. Res. 53(11) 9679-9691, http://dx.doi.org/10.1002/2017WR021097.
[4] Noble, J. J.; Arnold, A. E., Experimental and mathematical modeling of moisture transport in landfills, Chem. Eng. Commun., 100, 1, 95-111 (1991)
[5] Naghedifar, S. M.; Ziaei, A. N.; Naghedifar, S. A., Optimization of quadrilateral infiltration trench using numerical modeling and Taguchi approach, J. Hydrol. Eng., 24, 3, 04018069 (2019)
[6] Guyennon, N.; Romano, E.; Portoghese, I., Long-term climate sensitivity of an integrated water supply system: The role of irrigation, Sci. Total Environ., 565, 68-81 (2016)
[7] Tocci, M. D.; Kelley, C.; Miller, C. T.; Kees, C. E., Inexact newton methods and the method of lines for solving Richards’equation in two space dimensions, Comput. Geosci., 2, 4, 291-309 (1998) · Zbl 0962.76590
[8] Nimmo, J. R., Unsaturated zone flow processes, Encycl. Hydrol. Sci. (2006)
[9] Seus, D.; Mitra, K.; Pop, I. S.; Radu, F. A.; Rohde, C., A linear domain decomposition method for partially saturated flow in porous media, Comput. Methods Appl. Mech. Engrg., 333, 331-355 (2018) · Zbl 1440.76149
[10] Berninger, H.; Kornhuber, R.; Sander, O., A multidomain discretization of the Richards’ equation in layered soil, Comput. Geosci., 19, 213-232 (2015) · Zbl 1326.76055
[11] Zha, Y.; Yang, J.; Shi, L.; Song, X., Simulating one-dimensional unsaturated flow in heterogeneous soils with water content-based Richards equation, Vadose Zone J., 12, 2 (2013)
[12] De Luca, D. L.; Cepeda, J. M., Procedure to obtain analytical solutions of one-dimensional Richards’ equation for infiltration in two-layered soils, J. Hydrol. Eng., 21, 7, 04016018 (2016)
[13] Berardi, M.; Vurro, M., The numerical solution of Richards’ equation by means of method of lines and ensemble Kalman filter, Math. Comput. Simulation, 125, 38-47 (2016) · Zbl 1540.76128
[14] Berardi, M.; Andrisani, A.; Lopez, L.; Vurro, M., A new data assimilation technique based on ensemble Kalman filter and Brownian bridges: An application to Richards’ equation, Comput. Phys. Comm., 208, 43-53 (2016) · Zbl 1375.93134
[15] Camporese, M.; Paniconi, C.; Putti, M.; Salandin, P., Comparison of data assimilation techniques for a coupled model of surface and subsurface flow, Vadose Zone J., 4, 837-845 (2009)
[16] Moreira, P. H.S.; van Genuchten, M. T.; Orlande, H. R.B.; Cotta, R. M., Bayesian estimation of the hydraulic and solute transport properties of a small-scale unsaturated soil column, J. Hydrol. Hydromech., 64, 1, 30-44 (2016)
[17] Pagano, A.; Giordano, R.; Portoghese, I.; Fratino, U.; Vurro, M., A Bayesian vulnerability assessment tool for drinking water mains under extreme events, Nat. Hazards, 74, 3, 2193-2227 (2014)
[18] Pagano, A.; Pluchinotta, I.; Giordano, R.; Petrangeli, A. B.; Fratino, U.; Vurro, M., Dealing with uncertainty in decision-making for drinking water supply systems exposed to extreme events, Water Resour. Manag., 32, 6, 2131-2145 (2018)
[19] Merz, W.; Rybka, P., Strong solutions to the Richards equation in the unsaturated zone, J. Math. Anal. Appl., 371, 2, 741-749 (2010) · Zbl 1200.35177
[20] Berardi, M.; Difonzo, F.; Notarnicola, F.; Vurro, M., A transversal method of lines for the numerical modeling of vertical infiltration into the vadose zone, Appl. Numer. Math., 135, 264-275 (2018) · Zbl 1406.65078
[21] Coclite, G.; Karlsen, K.; Mishra, S.; Risebro, H., A hyperbolic-elliptic model of two-phase flow in porous media - existence of entropy solutions, Int. J. Numer. Anal. Model., 9 (2012) · Zbl 1277.76100
[22] Choquet, C., Semi-classical solutions for a nonlinear coupled elliptic-parabolic problem, Bull. Aust. Math. Soc., 76, 369-396 (2007) · Zbl 1144.35419
[23] Schroll, H.; Tveito, A., Local existence and stability for hyperbolic-elliptic system modeling two-phase reservoir flow, Electron. J. Differential Equations, 2000 (2000) · Zbl 0938.35005
[24] N. Krukov, S.; Sukoriansky, S., Boundary problems for systems of equations of two-phase porous flow type; statement of the problems, questions of solvability, justification of approximate methods, Math. USSR-Sb., 33, 62 (2007) · Zbl 0398.35039
[25] F. Otto, Stability Investigation of Planar Solutions of the Buckley-Leverett Equations, Preprint: Sonderforschungsbereich Nichtlineare Partielle Differentialgleichungen, Sonderforschungsbereich, 256, URL https://books.google.it/books?id=Z4MsGwAACAAJ, 1994.
[26] Berardi, M.; Difonzo, F. V., Strong solutions for Richards’ equation with Cauchy conditions and constant pressure gradient, Environ. Fluid Mech. (2019)
[27] Berardi, M.; Difonzo, F.; Vurro, M.; Lopez, L., The 1D Richards’ equation in two layered soils: a Filippov approach to treat discontinuities, Adv. Water Resour., 115, 264-272 (2018)
[28] Tocci, M. D.; Kelley, C.; Miller, C. T., Accurate and economical solution of the pressure-head form of Richards’ equation by the method of lines, Adv. Water Resour., 20, 1, 1-14 (1997)
[29] Filippov, A., Differential Equations with Discontinuous Right-Hand Sides, Mathematics and its Applications (1988), Kluwer Academic: Kluwer Academic Dordrecht · Zbl 0664.34001
[30] Vande Wouwer, A.; Saucez, P.; Schiesser, W., Adaptive method of lines, 1-411 (2001) · Zbl 0986.65083
[31] Salazar, A. J.; Raydan, M.; Campo, A., Theoretical analysis of the exponential transversal method of lines for the diffusion equation, Numer. Methods Partial Differential Equations, 16, 1, 30-41 (2000) · Zbl 0953.65063
[32] Causley, M. F.; Christlieb, A. J.; Ong, B.; Groningen, L. V., Method of lines transpose: An implicit solution to the wave equation, Math. Comp., 83, 2763-2786 (2014) · Zbl 1307.65122
[33] Causley, M. F.; Cho, H.; Christlieb, A. J.; Seal, D. C., Method of lines transpose: High order l-stable o(n) schemes for parabolic equations using successive convolution, SIAM J. Numer. Anal., 54, 3, 1635-1652 (2016) · Zbl 1339.65199
[34] Del Buono, N.; Elia, C.; Lopez, L., On the equivalence between the sigmoidal approach and utkin’s approach for piecewise-linear models of gene regulatory, SIAM J. Appl. Dyn. Syst., 13, 3, 1270-1292 (2014) · Zbl 1321.37079
[35] Berardi, M.; D’Abbicco, M., A critical case for the spiral stability for \(2 \times 2\) discontinuous systems and an application to recursive neural networks, Mediterr. J. Math., 13, 6, 4829-4844 (2016) · Zbl 1366.34023
[36] D’Abbicco, M.; Buono, N. D.; Gena, P.; Berardi, M.; Calamita, G.; Lopez, L., A model for the hepatic glucose metabolism based on hill and step functions, J. Comput. Appl. Math., 292, 746-759 (2016) · Zbl 1326.92020
[37] Berardi, M.; Lopez, L., On the continuous extension of Adams-Bashforth methods and the event location in discontinuous ODEs, Appl. Math. Lett., 25, 995-999 (2012) · Zbl 1242.65128
[38] Berardi, M., Rosenbrock-type methods applied to discontinuous differential systems, Math. Comput. Simulation, 95, 229-243 (2014) · Zbl 1533.65097
[39] Del Buono, N.; Lopez, L., Direct event location techniques based on Adams multistep methods for discontinuous ODEs, Appl. Math. Lett., 49, 152-158 (2015) · Zbl 1382.65202
[40] Dieci, L.; Lopez, L., One-sided direct event location techniques in the numerical solution of discontinuous differential systems, BIT Numer. Math., 55, 4, 987-1003 (2015) · Zbl 1338.65181
[41] Dieci, L.; Difonzo, F., A comparison of Filippov sliding vector fields in codimension 2, J. Comput. Appl. Math., 262, 161-179 (2014) · Zbl 1302.34018
[42] Lopez, L.; Maset, S., Time-transformations for the event location in discontinuous ODEs, Math. Comp., 87, 3, 2321-2341 (2018) · Zbl 1410.65481
[43] List, F.; Radu, F. A., A study on iterative methods for solving Richards’ equation, Comput. Geosci., 20, 2, 341-353 (2016) · Zbl 1396.65143
[44] Mitra, K.; Pop, I., A modified l-scheme to solve nonlinear diffusion problems, Comput. Math. Appl. (2018) · Zbl 1442.65215
[45] Lang, S., Complex Analysis (1999), Springer-Verlag: Springer-Verlag New York · Zbl 0933.30001
[46] Agosti, A.; Giovanardi, B.; Formaggia, L.; Scotti, A., A numerical procedure for geochemical compaction in the presence of discontinuous reactions, Adv. Water Resour., 94, 332-344 (2016)
[47] Gear, C.; Osterby, O., Solving ordinary differential equations with discontinuities, ACM Trans. Math. Software, 10, 23-24 (1984) · Zbl 0553.65050
[48] Hills, R. G.; Porro, I.; Hudson, D. B.; Wierenga, P. J., Modeling one-dimensional infiltration into very dry soils: 1. model development and evaluation, Water Resour. Res., 25, 6, 1259-1269 (1989)
[49] Clarification of soil texture class boundaries, https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_031477.pdf, Accessed: 19.03.09.
[50] Lopez, L.; Vacca, G., Spectral properties and conservation laws in mimetic finite difference methods for PDEs, J. Comput. Appl. Math., 292, 760-784 (2016) · Zbl 1329.65250
[51] da Veiga, L. B.; Lopez, L.; Vacca, G., Mimetic finite difference methods for Hamiltonian wave equations in 2D, Comput. Math. Appl., 74, 5, 1123-1141 (2017) · Zbl 1448.65092
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.