×

Weighted estimates of the Bergman projection with matrix weights. (English) Zbl 07861160

Condori, Alberto A. (ed.) et al., Recent progress in function theory and operator theory. AMS special session, virtual, April 6, 2022. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 799, 53-73 (2024).
Summary: We establish a weighted inequality for the Bergman projection with matrix weights for a class of pseudoconvex domains. We extend a result of A. Aleman and O. Constantin [J. Funct. Anal. 262, No. 5, 2359–2378 (2012; Zbl 1247.46022)] and obtain the following estimate for the weighted norm of \(P\): \[ \Vert P\Vert_{L^2(\Omega,W)}\leq C(\mathcal{B}_2(W))^{2}. \] Here \(\mathcal{B}_2(W)\) is the Bekollé-Bonami constant for the matrix weight \(W\) and \(C\) is a constant that is independent of the weight \(W\) but depends upon the dimension and the domain.
For the entire collection see [Zbl 1542.47001].

MSC:

32A25 Integral representations; canonical kernels (Szegő, Bergman, etc.)
32A36 Bergman spaces of functions in several complex variables
32A50 Harmonic analysis of several complex variables
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B35 Function spaces arising in harmonic analysis

Citations:

Zbl 1247.46022

References:

[1] Aleman, Alexandru, The Bergman projection on vector-valued \(L^2\)-spaces with operator-valued weights, J. Funct. Anal., 2359-2378, 2012 · Zbl 1247.46022 · doi:10.1016/j.jfa.2011.12.005
[2] Aleman, Alexandru, Characterizations of a limiting class \(B_\infty\) of B\'{e}koll\'{e}-Bonami weights, Rev. Mat. Iberoam., 1677-1692, 2019 · Zbl 1501.30006 · doi:10.4171/rmi/1097
[3] Bekoll\'{e}, David, In\'{e}galit\'{e}s \`a poids pour le noyau de Bergman, C. R. Acad. Sci. Paris S\'{e}r. A-B, A775-A778, 1978 · Zbl 0398.30006
[4] Balogh, Zolt\'{a}n M., Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains, Comment. Math. Helv., 504-533, 2000 · Zbl 0986.32012 · doi:10.1007/s000140050138
[5] Bekoll\'{e}, David, In\'{e}galit\'{e} \`a poids pour le projecteur de Bergman dans la boule unit\'{e} de \(\mathbf{C}^n \), Studia Math., 305-323, 1981/82 · Zbl 0516.47016 · doi:10.4064/sm-71-3-305-323
[6] Bickel, Kelly, Bounds for the Hilbert transform with matrix \(A_2\) weights, J. Funct. Anal., 1719-1743, 2016 · Zbl 1335.44001 · doi:10.1016/j.jfa.2015.12.006
[7] Bickel, Kelly, A study of the matrix Carleson embedding theorem with applications to sparse operators, J. Math. Anal. Appl., 229-243, 2016 · Zbl 1347.42032 · doi:10.1016/j.jmaa.2015.10.023
[8] Christ, Michael, Vector \(A_2\) weights and a Hardy-Littlewood maximal function, Trans. Amer. Math. Soc., 1995-2002, 2001 · Zbl 0995.42015 · doi:10.1090/S0002-9947-01-02759-3
[9] D’Angelo, John P., Real hypersurfaces, orders of contact, and applications, Ann. of Math. (2), 615-637, 1982 · Zbl 0488.32008 · doi:10.2307/2007015
[10] Duoandikoetxea, Javier, On the \(A_\infty\) conditions for general bases, Math. Z., 955-972, 2016 · Zbl 1343.42034 · doi:10.1007/s00209-015-1572-y
[11] Gan, Chun, Dyadic decomposition of convex domains of finite type and applications, Math. Z., 1939-1962, 2022 · Zbl 1487.32025 · doi:10.1007/s00209-022-02984-y
[12] Goldberg, Michael, Matrix \(A_p\) weights via maximal functions, Pacific J. Math., 201-220, 2003 · Zbl 1065.42013 · doi:10.2140/pjm.2003.211.201
[13] Grafakos, Loukas, Classical Fourier analysis, Graduate Texts in Mathematics, xviii+638 pp., 2014, Springer, New York · Zbl 1304.42001 · doi:10.1007/978-1-4939-1194-3
[14] Hyt\"{o}nen, Tuomas, Systems of dyadic cubes in a doubling metric space, Colloq. Math., 1-33, 2012 · Zbl 1244.42010 · doi:10.4064/cm126-1-1
[15] Hunt, Richard, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc., 227-251, 1973 · Zbl 0262.44004 · doi:10.2307/1996205
[16] Hyt\"{o}nen, Tuomas, The sharp square function estimate with matrix weight, Discrete Anal., Paper No. 2, 8 pp., 2019 · Zbl 1431.42019 · doi:10.19086/da
[17] Huo, Zhenghui, Weighted estimates for the Bergman projection on the Hartogs triangle, J. Funct. Anal., 108727, 34 pp., 2020 · Zbl 1453.32003 · doi:10.1016/j.jfa.2020.108727
[18] Huo, Zhenghui, A B\'{e}koll\`e-Bonami class of weights for certain pseudoconvex domains, J. Geom. Anal., 6042-6066, 2021 · Zbl 1471.32003 · doi:10.1007/s12220-020-00516-w
[19] Huo, Zhenghui, Bekoll\'{e}-Bonami estimates on some pseudoconvex domains, Bull. Sci. Math., Paper No. 102993, 36 pp., 2021 · Zbl 1475.32002 · doi:10.1016/j.bulsci.2021.102993
[20] Hyt\"{o}nen, Tuomas P., The sharp weighted bound for general Calder\'{o}n-Zygmund operators, Ann. of Math. (2), 1473-1506, 2012 · Zbl 1250.42036 · doi:10.4007/annals.2012.175.3.9
[21] Isralowitz, Joshua, Matrix weighted norm inequalities for commutators and paraproducts with matrix symbols, J. Lond. Math. Soc. (2), 243-270, 2017 · Zbl 1373.42017 · doi:10.1112/jlms.12053
[22] Lacey, Michael T., An elementary proof of the \(A_2\) bound, Israel J. Math., 181-195, 2017 · Zbl 1368.42016 · doi:10.1007/s11856-017-1442-x
[23] Lerner, Andrei K., A simple proof of the \(A_2\) conjecture, Int. Math. Res. Not. IMRN, 3159-3170, 2013 · Zbl 1318.42018 · doi:10.1093/imrn/rns145
[24] A. Limani and S. Pott, Sparse Lerner operators in infinite dimensions, Preprint, 2103.17005, 2022.
[25] McNeal, Jeffery D., Complex analysis. Local geometry of decoupled pseudoconvex domains, Aspects Math., E17, 223-230, 1991, Friedr. Vieweg, Braunschweig · Zbl 0747.32019
[26] McNeal, Jeffery D., The Bergman projection as a singular integral operator, J. Geom. Anal., 91-103, 1994 · Zbl 0804.32015 · doi:10.1007/BF02921594
[27] McNeal, Jeffery D., Estimates on the Bergman kernels of convex domains, Adv. Math., 108-139, 1994 · Zbl 0816.32018 · doi:10.1006/aima.1994.1082
[28] McNeal, Jeffery D., Explorations in complex and Riemannian geometry. Subelliptic estimates and scaling in the \(\overline \partial \)-Neumann problem, Contemp. Math., 197-217, 2003, Amer. Math. Soc., Providence, RI · Zbl 1041.32027 · doi:10.1090/conm/332/05937
[29] Nazarov, Fedor, Convex body domination and weighted estimates with matrix weights, Adv. Math., 279-306, 2017 · Zbl 1382.42010 · doi:10.1016/j.aim.2017.08.001
[30] Nazarov, F. L., The hunt for a Bellman function: applications to estimates for singular integral operators and to other classical problems of harmonic analysis, St. Petersburg Math. J.. Algebra i Analiz, 32-162, 1996 · Zbl 0873.42011
[31] Petermichl, S., The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical \(A_p\) characteristic, Amer. J. Math., 1355-1375, 2007 · Zbl 1139.44002 · doi:10.1353/ajm.2007.0036
[32] Pott, Sandra, Sharp B\'{e}koll\'{e} estimates for the Bergman projection, J. Funct. Anal., 3233-3244, 2013 · Zbl 1295.46020 · doi:10.1016/j.jfa.2013.08.018
[33] Rahm, Rob, Weighted estimates for the Berezin transform and Bergman projection on the unit ball, Math. Z., 1465-1478, 2017 · Zbl 1379.32006 · doi:10.1007/s00209-016-1809-4
[34] Treil, Sergei, Continuous frame decomposition and a vector Hunt-Muckenhoupt-Wheeden theorem, Ark. Mat., 363-386, 1997 · Zbl 0961.44006 · doi:10.1007/BF02559975
[35] Treil, S., Wavelets and the angle between past and future, J. Funct. Anal., 269-308, 1997 · Zbl 0876.42027 · doi:10.1006/jfan.1996.2986
[36] Volberg, A., Matrix \(A_p\) weights via \(S\)-functions, J. Amer. Math. Soc., 445-466, 1997 · Zbl 0877.42003 · doi:10.1090/S0894-0347-97-00233-6
[37] Wittwer, Janine, A sharp estimate on the norm of the martingale transform, Math. Res. Lett., 1-12, 2000 · Zbl 0951.42008 · doi:10.4310/MRL.2000.v7.n1.a1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.