×

Matrix weighted norm inequalities for commutators and paraproducts with matrix symbols. (English) Zbl 1373.42017

Summary: Let \(B\) be a locally integrable matrix function, \(W\) a matrix \(A_p\) weight with \(1<p<\infty\), and \(T\) be any of the Riesz transforms. We will characterize the boundedness of the commutator \([T,B]\) on \(L^p(W)\) in terms of the membership of \(B\) in a natural matrix weighted BMO space. To do this, we will characterize the boundedness of dyadic paraproducts on \(L^p(W)\) via a new matrix weighted Carleson embedding theorem. Finally, we will use some of the ideas from these proofs to (among other things) obtain quantitative weighted norm inequalities for these operators and also use them to prove sharp \(L^2\) bounds for the Christ/Goldberg matrix weighted maximal function associated with matrix \(A_2\) weights.

MSC:

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B25 Maximal functions, Littlewood-Paley theory

References:

[1] J.Alvarez, R.Bagby and D.Kurtz, ‘Weighted estimates for commutators of linear operators’, Studia Math.104 (1993) 195-209. · Zbl 0809.42006
[2] O.Beznosova, ‘Linear bound for the dyadic paraproduct on weighted Lebesgue space \(L_2 ( w )\)’, J. Funct. Anal.255 (2008) 994-1007. · Zbl 1149.47024
[3] K.Bickel, S.Petermichl and B.Wick, ‘Bounds for the Hilbert transform with matrix \(A_2\) weights’, J. Funct. Anal.270 (2016) 1719-1743. · Zbl 1335.44001
[4] K.Bickel and B.Wick, ‘A study of the matrix Carleson embedding theorem with applications to sparse operators’, J. Math. Anal. Appl.435 (2016) 229-243. · Zbl 1347.42032
[5] K.Bickel and B.Wick, ‘Well‐localized operators on matrix weighted \(L^2\) spaces’, Houston J. Math.42 (2016) 249-283. · Zbl 1356.47039
[6] S.Bloom, ‘A commutator theorem and weighted BMO’, Trans. Amer. Math. Soc.292 (1985) 103-122. · Zbl 0578.42012
[7] M.Bownik, ‘Inverse volume inequalities for matrix weights’, Indiana Univ. Math. J.50 (2001) 383-410. · Zbl 0992.42006
[8] M.Christ and M.Goldberg, ‘Vector A \({}_2\) weights and a Hardy‐Littlewood maximal function’, Trans. Amer. Math. Soc.353 (2001) 1995-2002. · Zbl 0995.42015
[9] R.Coifmann, R.Rochberg and G.Weiss, ‘Factorization theorems for Hardy spaces in several variables’, Ann. of Math.103 (1976) 611-635. · Zbl 0326.32011
[10] D. Cruz‐UribeSFO, J.Martell and C.Perez, ‘Sharp weighted estimates for approximating dyadic operators’, Electron. Res. Announc. Math. Sci.17 (2010) 12-19. · Zbl 1188.42005
[11] A.Culiuc and S.Triel, ‘The Carleson embedding theorem with matrix weights’, Preprint, 2015, http://arxiv.org/abs/1508.01716.
[12] M.Goldberg, ‘Matrix \(A_p\) weights via maximal functions’, Pacific J. Math.211 (2003) 201-220. · Zbl 1065.42013
[13] I.Holmes, M.Lacey and B.Wick, ‘Bloom’s inequality: commutators in a two‐weight setting’, Arch. Math. (Basel)106 (2016) 53-63. · Zbl 1342.42005
[14] I.Holmes, M.Lacey and B.Wick, ‘Commutators in the two‐weight setting’, Math. Ann.367 (2017) 51-80. · Zbl 1364.42017
[15] R.Hunt, B.Muckenhoupt and R.Wheeden, ‘Weighted norm inequalities for the conjugate function and Hilbert transform’, Trans. Amer. Math. Soc.176 (2003) 227-251. · Zbl 0262.44004
[16] T.Hytönen, ‘Representation of singular integrals by dyadic operators, and the \(A_2\) theorem’, Preprint, 2011, http://arxiv.org/abs/1108.5119v1.
[17] J.Isralowitz, ‘Matrix weighted Triebel‐Lizorkin bounds: a simple stopping time proof’, Preprint, 2015, http://arxiv.org/abs/1507.06700. · Zbl 1471.42036
[18] J.Isralowitz, ‘A Matrix weighted T1 theorem for matrix kernelled CZOs’, Preprint, 2015, http://arxiv.org/abs/1508.02474. · Zbl 1400.42012
[19] J.Isralowitz, ‘Boundedness of commutators and \(H{}^1\)‐BMO duality in the two matrix weighted setting’, Preprint, 2015, http://arxiv.org/abs/1511.02926.
[20] J.Isralowitz and K.Moen, ‘Matrix weighted Poincare inequalities and applications to degenerate elliptic systems’, Preprint, 2016, http://arxiv.org/abs/1601.00111.
[21] S.Janson, ‘Mean oscillation and commutators of singular integral operators’, Ark. Mat.16 (1978) 263-270. · Zbl 0404.42013
[22] N. H.Katz and M. C.Pereyra, ‘Haar multipliers, paraproducts, and weighted inequalities’, Analysis of Divergence, Applied and Numerical Harmonic Analysis (Birkhäuser Boston, Boston, MA, 1999) 145-170. · Zbl 0918.42031
[23] M.Lacey, S.Petermichl, J.Pipher and B.Wick, ‘Iterated Riesz commutators: a simple proof of boundedness’, Contemp. Math.505 (2010) 171-178. · Zbl 1204.42035
[24] A.Lerner, A and F, Nazarov, ‘Intuitive dyadic calculus: the basics’, Preprint, 2015, arxiv.org/abs/1508.05639. · Zbl 1440.42062
[25] B.Muckenhoupt and R.Wheeden, ‘Weighted bounded mean oscillation and the Hilbert transform’, Studia Math.54 (1976) 221-237. · Zbl 0318.26014
[26] F.Nazarov and S.Treil, ‘The hunt for a Bellman function: applications to estimates for singular integral operators and to other classical problems of harmonic analysis’, Algebra i Analiz8 (1996) 32-162. · Zbl 0873.42011
[27] F.Nazarov, S.Treil and A.Volberg, ‘The \(T b\)‐theorem on non‐homogeneous spaces’, Acta Math.190 (2003) 151-239. · Zbl 1065.42014
[28] M. C.Pereyra, ‘Lecture notes on dyadic harmonic analysis’, Contemp. Math.289 (2000) 1-60. · Zbl 0991.42010
[29] S.Pott, ‘A sufficient condition for the boundedness of operator weighted martingale transforms and Hilbert transform’, Studia Math., 182 (2007) 99-111. · Zbl 1126.42004
[30] S.Roudenko, ‘Matrix‐weighted Besov spaces’, Trans. Amer. Math. Soc.355 (2003) 273-314. · Zbl 1010.42011
[31] M.Taylor, Tools for PDE. Pseudodifferential operators, paradifferential operators, and layer potentials, Mathematical Surveys and Monographs (London Mathematical Society, 2001) 50-509.
[32] S.Treil and A.Volberg, ‘Wavelets and the angle between past and future’, J. Funct. Anal.143 (1997) 269-308. · Zbl 0876.42027
[33] A.Volberg, ‘Matrix A \({}_p\) weights via \(S\)‐functions’, J. Amer. Math. Soc.10 (1997) 445-466. · Zbl 0877.42003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.