×

Interactions of certain localized waves for an extended \((3+1)\)-dimensional Kadomtsev-Petviashvili equation in fluid mechanics. (English) Zbl 07858889

Summary: Currently, there is much interest in the study on the localized waves and their interactions in fluid mechanics. An extended \((3+1)\)-dimensional Kadomtsev-Petviashvili equation is considered here. By means of the Hirota method, we obtain the \(N\)-soliton solutions, with \(N\) as a positive integer. The higher-order breather solutions are obtained from the \(N\)-soliton solutions through the complex conjugated transformations. Making use of the long-wave limit method, we determine the higher-order lump solutions via the \(N\)-soliton solutions. Besides, some hybrid solutions are presented. Three kinds of the localized waves, namely, the solitons, breathers and lumps, along with their interactions, are investigated via the above solutions. Amplitudes, shapes and velocities of those localized waves remain invariant after the interactions, which indicate that the interactions are elastic. Fluid-mechanically meaningful, all our results rely on the coefficients in that equation.

MSC:

35Q35 PDEs in connection with fluid mechanics
35Q51 Soliton equations
35C05 Solutions to PDEs in closed form
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
68W30 Symbolic computation and algebraic computation
Full Text: DOI

References:

[1] Sapsis, T. P., Statistics of extreme events in fluid flows and waves, Annu. Rev. Fluid Mech., 53, 85-111, 2021 · Zbl 1467.76045
[2] Robbe-Saule, M.; Morize, C.; Henaff, R.; Bertho, Y.; Sauret, A.; Gondret, P., Experimental investigation of tsunami waves generated by granular collapse into water, J. Fluid Mech., 907, A11, 2021 · Zbl 1461.76505
[3] Huang, J.; Porter, R., Water wave propagation through arrays of closely spaced surface-piercing vertical barriers, J. Fluid Mech., 960, A20, 2023 · Zbl 1511.76011
[4] Zheng, S.; Liang, H.; Michele, S.; Greaves, D., Water wave interaction with an array of submerged circular plates: Hankel transform approach, Phys. Rev. Fluids, 8, Article 014803 pp., 2023
[5] Hereman, W., Shallow water waves and solitary waves, (Meyers, R. A., Mathematics of Complexity and Dynamical Systems, 2009, Springer), 1520-1532
[6] Toffoli, A.; Bitner-Gregersen, E. M., Types of ocean surface waves, wave classification, (Carlton, J.; Jukes, P.; Choo, Y. S., Encyclopedia of Maritime and Offshore Engineering, 2017, Wiley), 1-8
[7] Katopodes, N. D., Free-Surface Flow: Shallow Water Dynamics, 2019, Elsevier
[8] Mostert, W.; Deike, L., Inertial energy dissipation in shallow-water breaking waves, J. Fluid Mech., 890, A12, 2020 · Zbl 1460.76103
[9] Redor, I.; Barthélemy, E.; Michallet, H.; Onorato, M.; Mordant, N., Experimental evidence of a hydrodynamic soliton gas, Phys. Rev. Lett., 122, Article 214502 pp., 2019
[10] J.S. Russell, Report on waves, in: Fourteenth Meeting of the British Association for the Advancement of Science, 1844.
[11] Zabusky, N. J.; Kruskal, M. D., Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 15, 240-243, 1965 · Zbl 1201.35174
[12] Remoissenet, M., Waves Called Solitons: Concepts and Experiments, 1996, Springer · Zbl 0922.35147
[13] Guo, B. L.; Pang, X. F.; Wang, Y. F.; Liu, N., Solitons, 2018, De Gruyter: De Gruyter Berlin · Zbl 1406.35001
[14] Luo, D.; Jin, Y.; Nguyen, J. H.V.; Malomed, B. A.; Marchukov, O. V.; Yurovsky, V. A.; Dunjko, V.; Olshanii, M.; Hulet, R. G., Creation and characterization of matter-wave breathers, Phys. Rev. Lett., 125, Article 183902 pp., 2020
[15] Ablowitz, M. J.; Cole, J. T., Transverse instability of rogue wave, Phys. Rev. Lett., 127, Article 104101 pp., 2021
[16] Chakravarty, S.; Zowada, M., Multi-lump wave patterns of KPI via integer partitions, Physica D, 446, Article 133644 pp., 2023 · Zbl 1512.65237
[17] Alfimov, G. L.; Medvedeva, E. V.; Pelinovsky, D. E., Wave systems with an infinite number of localized traveling waves, Phys. Rev. Lett., 113, Article 054103 pp., 2014
[18] Ablowitz, M. J., Nonlinear waves and the inverse scattering transform, Optik, 278, Article 170710 pp., 2023
[19] He, Y.; Slunyaev, A.; Mori, N.; Chabchoub, A., Experimental evidence of nonlinear focusing in standing water waves, Phys. Rev. Lett., 129, Article 144502 pp., 2022
[20] Rowley, M.; Hanzard, P. H.; Cutrona, A.; Bao, H.; Chu, S. T.; Little, B. E.; Morandotti, R.; Moss, D. J.; Oppo, G. L.; Gongora, J. S.T.; Peccianti, M.; Pasquazi, A., Interaction and co-assembly of optical and topological solitons, Nature, 608, 303, 2022
[21] Aycock, L. M.; Hurst, H. M.; Efimkin, D. K.; Genkina, D.; Lu, H. I.; Galitski, V. M.; Spielman, I. B., Brownian motion of solitons in a Bose-Einstein condensate, Proc. Natl. Acad. Sci. USA, 114, 2503-2508, 2017 · Zbl 1404.82034
[22] Farolfi, A.; Trypogeorgos, D.; Mordini, C.; Lamporesi, G.; Ferrari, G., Observation of magnetic solitons in two-component Bose-Einstein condensates, Phys. Rev. Lett., 125, Article 030401 pp., 2020
[23] Heidemann, R.; Zhdanov, S.; Sütterlin, R.; Thomas, H. M.; Morfill, G. E., Dissipative dark soliton in a complex plasma, Phys. Rev. Lett., 102, Article 135002 pp., 2009
[24] Kodama, Y., Kp solitons in shallow water, J. Phys. A: Math. Theor., 43, Article 434004 pp., 2010 · Zbl 1378.35072
[25] Chen, S. J.; Yin, Y. H.; Lü, X., Elastic collision between one lump wave and multiple stripe waves of nonlinear evolution equations, Commun. Nonlinear Sci. Numer. Simul., 130, Article 107205 pp., 2024 · Zbl 1531.35248
[26] Gao, X. Y., Oceanic shallow-water investigations on a generalized Whitham-Broer-Kaup-Boussinesq-Kupershmidt system, Phys. Fluids, 35, Article 127106 pp., 2023
[27] Gao, X. Y.; Guo, Y. J.; W. R., Shan, Ultra-short optical pulses in a birefringent fiber via a generalized coupled Hirota system with the singular manifold and symbolic computation, Appl. Math. Lett., 140, Article 108546 pp., 2023 · Zbl 1520.78040
[28] Zhou, T. Y.; Tian, B., Auto-Bäcklund transformations, Lax pair, bilinear forms and bright solitons for an extended (3+1)-dimensional nonlinear Schrödinger equation in an optical fiber, Appl. Math. Lett., 133, Article 108280 pp., 2022 · Zbl 1496.35374
[29] Feng, C. H.; Tian, B.; Yang, D. Y.; Gao, X. T., Lump and hybrid solutions for a (3+1)-dimensional Boussinesq-type equation for the gravity waves over a water surface, Chin. J. Phys., 83, 515-526, 2023 · Zbl 1541.35377
[30] Zhou, T. Y.; Tian, B.; Shen, Y.; Gao, X. T., Bilinear form, bilinear auto-Bäcklund transformation, soliton and half-periodic kink solutions on the non-zero background of a (3+1)-dimensional time-dependent-coefficient Boiti-Leon-Manna-Pempinelli equation, Wave Motion, 121, Article 103180 pp., 2023 · Zbl 1524.35572
[31] Gao, D.; Lü, X.; Peng, M. S., Study on the (2+1)-dimensional extension of Hietarinta equation: soliton solutions and Bäcklund transformation, Phys. Scr., 98, Article 095225 pp., 2023
[32] Cheng, C. D.; Tian, B.; Ma, Y. X.; Zhou, T. Y.; Shen, Y., Pfaffian, breather, and hybrid solutions for a (2+1)-dimensional generalized nonlinear system in fluid mechanics and plasma physics, Phys. Fluids, 34, Article 115132 pp., 2022
[33] Cheng, C. D.; Tian, B.; Zhou, T. Y.; Shen, Y., Wronskian solutions and Pfaffianization for a (3+1)-dimensional generalized variable-coefficient Kadomtsev-Petviashvili equation in a fluid or plasma, Phys. Fluids, 35, Article 037101 pp., 2023
[34] Du, Z.; Nie, Y.; Guo, Q., Higher-order matrix nonlinear Schrödinger equation with the negative coherent coupling: binary Darboux transformation, vector solitons, breathers and rogue waves, Opt. Express, 31, 42507-42523, 2023
[35] Wu, X. H.; Gao, Y. T., Generalized Darboux transformation and solitons for the Ablowitz-Ladik equation in an electrical lattice, Appl. Math. Lett., 137, Article 108476 pp., 2023 · Zbl 1504.35124
[36] Wu, X. H.; Gao, Y. T.; Yu, X.; Li, L. Q.; Ding, C. C., Vector breathers, rogue and breather-rogue waves for a coupled mixed derivative nonlinear Schrödinger system in an optical fiber, Nonlinear Dyn., 111, 5641-5653, 2023
[37] Wu, X. H.; Gao, Y. T.; Yu, X.; Liu, F. Y., Generalized Darboux transformation and solitons for a Kraenkel-Manna-Merle system in a ferromagnetic saturator, Nonlinear Dyn., 111, 14421-14433, 2023
[38] Wu, X. H.; Gao, Y. T.; Yu, X.; Ding, C. C., \(N\)-Fold generalized darboux transformation and asymptotic analysis of the degenerate solitons for the Sasa-Satsuma equation in fluid dynamics and nonlinear optics, Nonlinear Dyn., 111, 16339-16352, 2023
[39] Wen, L. L.; Fan, E. G.; Chen, Y., Multiple-high-order pole solutions for the NLS equation with quartic terms, Appl. Math. Lett., 130, Article 108008 pp., 2022 · Zbl 1490.35460
[40] Gao, X. Y., Considering the wave processes in oceanography, acoustics and hydrodynamics by means of an extended coupled (2+1)-dimensional Burgers system, Chin. J. Phys., 86, 572-577, 2023 · Zbl 1541.35014
[41] Gao, X. Y.; Shan, W. R.; Guo, Y. J., Theoretical investigations on a variable-coefficient generalized forced-perturbed Korteweg-de Vries-Burgers model for a dilated artery, blood vessel or circulatory system with experimental support, Commun. Theor. Phys., 75, Article 115006 pp., 2023 · Zbl 1537.76188
[42] Gao, X. T.; Tian, B., Water-wave studies on a (2+1)-dimensional generalized variable-coefficient Boiti-Leon-Pempinelli system, Appl. Math. Lett., 128, Article 107858 pp., 2022 · Zbl 1491.76013
[43] Rasin, A. G.; Schiff, J., Bäcklund transformations for the Camassa-Holm equation, J. Nonlinear Sci., 27, 45-69, 2017 · Zbl 1365.37054
[44] Zhou, T. Y.; Tian, B.; Shen, Y.; Gao, X. T., Auto-Bäcklund transformations and soliton solutions on the nonzero background for a (3+1)-dimensional Korteweg-de Vries-Calogero-Bogoyavlenskii-Schif equation in a fluid, Nonlinear Dyn., 111, 8647-8658, 2023
[45] Gao, X. Y., Letter to the Editor on the Korteweg-de Vries-type systems inspired by Results Phys. 51, 106624 (2023) and 50, 106566 (2023), Results Phys., 53, Article 106932 pp., 2023
[46] Zhou, T. Y.; Tian, B.; Shen, Y.; Cheng, C. D., Lie symmetry analysis, optimal system, symmetry reductions and analytic solutions for a (2+1)-dimensional generalized nonlinear evolution system in a fluid or a plasma, Chin. J. Phys., 84, 343-356, 2023 · Zbl 1541.35405
[47] Korteweg, D. J.; de Vries, G., On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Phil. Mag. Ser. 5, 39, 422-443, 1895 · JFM 26.0881.02
[48] Kamchatnov, A. M.; Shaykin, D. V., Propagation of wave packets along intensive simple waves, Phys. Fluids, 33, Article 052120 pp., 2021
[49] Kadomtsev, B. B.; Petviashvili, V. I., On the stability of solitary waves in weakly dispersing media, Sov. Phys. Dokl., 15, 539-541, 1970 · Zbl 0217.25004
[50] Ablowitz, M. J., Nonlinear Dispersive Waves, 2011, Cambridge Univ. Press: Cambridge Univ. Press Cambridge, UK · Zbl 1232.35002
[51] Infeld, E.; Senatorski, A.; Skorupski, A. A., Decay of Kadomtsev-Petviashvili solitons, Phys. Rev. Lett., 72, 1345-1347, 1994
[52] Klein, C.; Saut, J. C., Numerical study of blow up and stability of solutions of generalized Kadomtsev-Petviashvili equations, J. Nonlinear Sci., 22, 763-811, 2012 · Zbl 1253.35150
[53] Adler, M.; Cafasso, M.; van Moerbeke, P., Non-linear PDEs for gap probabilities in random matrices and KP theory, Physica D, 241, 2265-2284, 2012 · Zbl 1270.35205
[54] Fukuma, M.; Kawai, H.; Nakayama, R., Infinite dimensional Grassmannian structure of two-dimensional quantum gravity, Comm. Math. Phys., 143, 371-403, 1992 · Zbl 0757.35076
[55] Krichever, I. M., Methods of algebraic geometry in the theory of non-linear equations, Russ. Math. Surv., 32, 185-213, 1977 · Zbl 0386.35002
[56] Casian, L.; Kodama, Y., Toda lattice, cohomology of compact Lie groups and finite chevalley groups, Invent. Math., 165, 163-208, 2006 · Zbl 1118.22008
[57] Kodama, Y., KP Solitons and the Grassmannians: Combinatorics and Geometry of Two-Dimensional Wave Patterns, 2017, Springer · Zbl 1372.35266
[58] Wazwaz, A. M.; Alyousef, H. A.; El-Tantawy, S., An extended Painlevé integrable Kadomtsev-Petviashvili equation with lumps and multiple soliton solutions, Int. J. Numer. Method H., 33, 2533-2543, 2023
[59] David, D.; Kamran, N.; Levi, D.; Winternitz, P., Subalgebras of loop algebras and symmetries of the Kadomtsev-Petviashvili equation, Phys. Rev. Lett., 55, 2111-2113, 1985
[60] Nozaki, K., Hirota’s method and the singular manifold expansion, J. Phys. Soc. Japan, 56, 3052-3054, 1987
[61] Steeb, W. H.; Euler, N., Nonlinear Evolution Equations and Painlevé Test, 1988, World Scientific: World Scientific Singapore · Zbl 0723.34001
[62] Hirota, R., The Direct Method in Soliton Theory, 2004, Cambridge Univ. Press: Cambridge Univ. Press New York · Zbl 1099.35111
[63] Ablowitz, M. J.; Segur, H., Solitons and the Inverse Scattering Transform, 1981, SIAM: SIAM Philadelphia · Zbl 0472.35002
[64] Drazin, P. G.; Johnson, R. S., Solitons: An Introduction, 1989, Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0661.35001
[65] Hirota, R., Exact \(N\) soliton solutions of the wave equation of long waves in shallow water and in nonlinear lattices, J. Phys. Soc. Japan, 14, 810-814, 1973 · Zbl 0261.76008
[66] Hietarinta, J., Introduction to the Hirota bilinear method, (Kosmann-Schwarzbach, Y.; Grammaticos, B.; Tamizhmani, K. M., Integrability of Nonlinear Systems, 1997, Springer: Springer Berlin), 95-103 · Zbl 0907.58030
[67] Zhang, X.; Wang, L.; Liu, C.; Li, M.; Zhao, Y. C., High-dimensional nonlinear wave transitions and their mechanisms, Chaos, 30, Article 113107 pp., 2020 · Zbl 1454.35048
[68] Ablowitz, M. J.; Satsuma, J., Solitons and rational solutions of nonlinear evolution equations, J. Math. Phys., 19, 2180-2186, 1978 · Zbl 0418.35022
[69] Satsuma, J.; Ablowitz, M. J., Two-dimensional lumps in nonlinear dispersive systems, J. Math. Phys., 20, 1496-1503, 1979 · Zbl 0422.35014
[70] Gao, X. Y., Two-layer-liquid and lattice considerations through a (3+1)-dimensional generalized Yu-Toda-Sasa-Fukuyama system, Appl. Math. Lett., 152, Article 109018 pp., 2024 · Zbl 07850545
[71] Feng, C. H.; Tian, B.; Yang, D. Y.; Gao, X. T., Bilinear form, bilinear Bäcklund transformations, breather and periodic-wave solutions for a (2+1)-dimensional shallow water equation with the time-dependent coefficients, Qual. Theory Dyn. Syst., 22, 147, 2023 · Zbl 1529.35516
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.