×

Added mass of oscillating bodies in stratified fluids. (English) Zbl 07855668

Summary: The concept of added mass is generalized to stratified fluids, accounting for the presence of internal waves. Once the added mass of a moving body is known, so is the hydrodynamic force exerted on it by the fluid, and the energy imparted by it to the fluid. As a function of frequency, added mass is complex. Its real part is associated with inertia and its imaginary part, only present in the frequency range of propagating waves, with wave damping. Owing to causality, these two parts satisfy Kramers-Kronig relations. The added masses of an elliptic cylinder of horizontal axis, typical of two-dimensional bodies, and a spheroid of vertical axis, typical of three-dimensional bodies, are deduced from their dipole strengths, themselves deduced from their representations as single layers. The wave power is shown to be a maximum, for fixed oscillation amplitude, at approximately 0.8 times the buoyancy frequency. In the temporal domain, added mass appears as a new memory force taking the form of a convolution integral. The kernel of this integral combines algebraically decaying oscillations at the buoyancy frequency on the one hand; and an exponentially damped oscillation for the horizontal motion of the spheroid, implying short-term memory, an aperiodic algebraic decay for its vertical motion, implying long-term memory, and a constant for the motion of the cylinder, implying everlasting memory, on the other hand. A limitation of the study is its restriction to translational motion.

MSC:

76-XX Fluid mechanics
Full Text: DOI

References:

[1] Ardekani, A.M., Doostmohammadi, A. & Desai, N.2017Transport of particles, drops, and small organisms in density stratified fluids. Phys. Rev. Fluids2, 100503.
[2] Baines, P.G.1982On internal tide generation models. Deep-Sea Res. A29, 307-338.
[3] Balmforth, N.J. & Peacock, T.2009Tidal conversion by supercritical topography. J. Phys. Oceanogr.39, 1965-1974.
[4] Basset, A.B.1888On the motion of a sphere in a viscous liquid. Phil. Trans. R. Soc. Lond. A179, 43-63. · JFM 20.1003.01
[5] Batchelor, G.K.1967An Introduction to Fluid Dynamics. Cambridge University Press. · Zbl 0152.44402
[6] Boussinesq, J.1885Sur la résistance qu’oppose un liquide indéfini en repos, sans pesanteur, au mouvement varié d’une sphère solide qu’il mouille sur toute sa surface, quand les vitesses restent bien continues et assez faibles pour que leurs carrés et produits soient négligeables. C. R. Hebd. Séances Acad. Sci.100, 935-937. · JFM 17.0920.01
[7] Brennen, C.E.1982 A review of added mass and fluid inertial forces. Tech. Rep. CR 82.010. Naval Civil Engineering Laboratory. Available at: https://resolver.caltech.edu/CaltechAUTHORS:BREncel82.
[8] Brouzet, C., Ermanyuk, E.V., Moulin, M., Pillet, G. & Dauxois, T.2017Added mass: a complex facet of tidal conversion at finite depth. J. Fluid Mech.831, 101-127. · Zbl 1421.76050
[9] Bühler, O.2014Waves and Mean Flows, 2nd edn. Cambridge University Press. · Zbl 1286.86002
[10] Cadby, J. & Linton, C.2000Three-dimensional water-wave scattering in two-layer fluids. J. Fluid Mech.423, 155-173. · Zbl 0979.76016
[11] Candelier, F., Mehaddi, R. & Vauquelin, O.2014The history force on a small particle in a linearly stratified fluid. J. Fluid Mech.749, 184-200.
[12] Cerasoli, C.P.1978Experiments on buoyant-parcel motion and the generation of internal gravity waves. J. Fluid Mech.86, 247-271.
[13] Cummins, W.E.1962The impulse response function and ship motions. Schiffstechnik9, 101-109.
[14] Davis, A.M.J. & Llewellyn Smith, S.G.2010Tangential oscillations of a circular disk in a viscous stratified fluid. J. Fluid Mech.656, 342-359. · Zbl 1197.76042
[15] Dickinson, R.E.1969Propagators of atmospheric motions. 1. Excitation by point impulses. Rev. Geophys.7, 483-514.
[16] Eames, I. & Hunt, J.C.R.1997Inviscid flow around bodies moving in weak density gradients without buoyancy effects. J. Fluid Mech.353, 331-355. · Zbl 0913.76015
[17] Echeverri, P. & Peacock, T.2010Internal tide generation by arbitrary two-dimensional topography. J. Fluid Mech.659, 247-266. · Zbl 1205.76070
[18] Echeverri, P., Yokossi, T., Balmforth, N.J. & Peacock, T.2011Tidally generated internal-wave attractors between double ridges. J. Fluid Mech.669, 354-374. · Zbl 1225.76093
[19] Ermanyuk, E.V.2000The use of impulse response functions for evaluation of added mass and damping coefficient of a circular cylinder oscillating in linearly stratified fluid. Exp. Fluids28, 152-159.
[20] Ermanyuk, E.V.2002The rule of affine similitude for the force coefficients of a body oscillating in a uniformly stratified fluid. Exp. Fluids32, 242-251.
[21] Ermanyuk, E.V. & Gavrilov, N.V.2002aForce on a body in a continuously stratified fluid. Part 1. Circular cylinder. J. Fluid Mech.451, 421-443. · Zbl 1005.76017
[22] Ermanyuk, E.V. & Gavrilov, N.V.2002bOscillations of cylinders in a linearly stratified fluid. J. Appl. Mech. Tech. Phys.43, 503-511.
[23] Ermanyuk, E.V. & Gavrilov, N.V.2003Force on a body in a continuously stratified fluid. Part 2. Sphere. J. Fluid Mech.494, 33-50. · Zbl 1063.76504
[24] Ferrari, R.2014What goes down must come up. Nature513, 179-180.
[25] Ferrari, R., Mashayek, A., Mcdougall, T.J., Nikurashin, M. & Campin, J.2016Turning ocean mixing upside down. J. Phys. Oceanogr.46, 2239-2261.
[26] Ferrari, R. & Wunsch, C.2009Ocean circulation kinetic energy: reservoirs, sources, and sinks. Annu. Rev. Fluid Mech.41, 253-282. · Zbl 1159.76050
[27] Fox, D.W.1976Transient solutions for stratified fluid flows. J. Res. Nat. Bur. Stand. B80, 79-88. · Zbl 0403.76083
[28] Gabov, S.A. & Shevtsov, P.V.1983Basic boundary value problems for the equation of oscillations of a stratified fluid. Sov. Maths Dokl.27, 238-241. · Zbl 0546.76128
[29] Gabov, S.A. & Shevtsov, P.V.1986The method of descent and singular solutions of the equation of dynamics of a stratified liquid. Differ. Equ.22, 210-215. · Zbl 0623.76123
[30] Garrett, C. & Kunze, E.2007Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech.39, 57-87. · Zbl 1296.76026
[31] Gatignol, R.1983The Faxén formulae for a rigid particle in an unsteady non-uniform Stokes flow. J. Méc. Théor. Appl.2, 143-160. · Zbl 0544.76032
[32] Gordeichik, B.N. & Ter-Krikorov, A.M.1996Uniform approximations of the fundamental solution of the equation of internal waves. J. Appl. Maths Mech.60, 439-447. · Zbl 0894.76015
[33] Gorgui, M.A., Faltas, M.S. & Ahmed, A.Z.1995Motion generated by a porous wave-maker in a continuously stratified fluid. Intl J. Engng Sci.33, 757-771. · Zbl 0899.76348
[34] Gorodtsov, V.A. & Teodorovich, E.V.1980On the generation of internal waves in the presence of uniform straight-line motion of local and nonlocal sources. Izv. Atmos. Ocean. Phys.16, 699-704.
[35] Gorodtsov, V.A. & Teodorovich, E.V.1981 Cherenkov radiation of internal waves by a source in uniform motion. Preprint 183. Institute for Problems in Mechanics, Academy of Sciences of the USSR. In Russian.
[36] Greenhow, M.1984A note on the high-frequency limits of a floating body. J. Ship Res.28, 226-228.
[37] Greenhow, M.1986High- and low-frequency asymptotic consequences of the Kramers-Kronig relations. J. Engng Maths20, 293-306. · Zbl 0608.76016
[38] Hurlen, E.C.2006 The motions and wave fields produced by an ellipse moving through a stratified fluid. PhD thesis, University of California at San Diego. Available at: https://escholarship.org/uc/item/40m4494n.
[39] Hurley, D.G.1997The generation of internal waves by vibrating elliptic cylinders. Part 1. Inviscid solution. J. Fluid Mech.351, 105-118. · Zbl 0903.76018
[40] Hurley, D.G. & Hood, M.J.2001The generation of internal waves by vibrating elliptic cylinders. Part 3. Angular oscillations and comparison of theory with recent experimental observations. J. Fluid Mech.433, 61-75. · Zbl 1107.76317
[41] Jackson, J.D.1999Classical Electrodynamics, 3rd edn. Wiley. · Zbl 0920.00012
[42] Kapitonov, B.V.1980Potential theory for the equation of small oscillations of a rotating fluid. Maths USSR Sbornik.37, 559-579. · Zbl 0452.35010
[43] Kennard, E.H.1967 Irrotational flow of frictionless fluids, mostly of invariable density. Tech. Rep. 2299. David Taylor Model Basin. Available at: https://apps.dtic.mil/sti/citations/AD0653463.
[44] King, B., Zhang, H.P. & Swinney, H.L.2009Tidal flow over three-dimensional topography in a stratified fluid. Phys. Fluids21, 116601. · Zbl 1183.76283
[45] Kochin, N.E., Kibel’, I.A. & Roze, N.V.1964Theoretical Hydromechanics. Wiley. · Zbl 0121.20301
[46] Korotkin, A.I.2009Added Masses of Ship Structures. Springer.
[47] Kotik, J. & Mangulis, V.1962On the Kramers-Kronig relations for ship motions. Intl Shipbuild. Prog.9, 361-368.
[48] Lai, R.Y.S. & Lee, C.-M.1981Added mass of a spheroid oscillating in a linearly stratified fluid. Intl J. Engng Sci.19, 1411-1420. · Zbl 0486.76116
[49] Lam, T., Vincent, L. & Kanso, E.2019Passive flight in density-stratified fluids. J. Fluid Mech.860, 200-223. · Zbl 1415.76796
[50] Landau, L.D. & Lifshitz, E.M.1980Statistical Physics. Part 1, 3rd edn. Pergamon.
[51] Landau, L.D. & Lifshitz, E.M.1984Electrodynamics of Continuous Media, 2nd edn. Pergamon.
[52] Landau, L.D. & Lifshitz, E.M.1987Fluid Mechanics, 2nd edn. Pergamon. · Zbl 0655.76001
[53] Larsen, L.H.1969Oscillations of a neutrally buoyant sphere in a stratified fluid. Deep-Sea Res.16, 587-603.
[54] Lawrence, C.J. & Weinbaum, S.1986The force on an axisymmetric body in linearized, time-dependent motion: a new memory term. J. Fluid Mech.171, 209-218. · Zbl 0611.76048
[55] Lawrence, C.J. & Weinbaum, S.1988The unsteady force on a body at low Reynolds number; the axisymmetric motion of a spheroid. J. Fluid Mech.189, 463-489. · Zbl 0658.76031
[56] Le Dizès, S. & Le Bars, M.2017Internal shear layers from librating objects. J. Fluid Mech.826, 653-675. · Zbl 1430.76479
[57] Legg, S.2021Mixing by oceanic lee waves. Annu. Rev. Fluid Mech.53, 173-201. · Zbl 1459.76176
[58] Lighthill, J.1958An Introduction to Fourier Analysis and Generalised Functions. Cambridge University Press. · Zbl 0078.11203
[59] Lighthill, J.1978Waves in Fluids. Cambridge University Press. · Zbl 0375.76001
[60] Lighthill, J.1986An Informal Introduction to Theoretical Fluid Mechanics. Oxford University Press. · Zbl 0604.76002
[61] Linton, C. & Mciver, M.1995The interaction of waves with horizontal cylinders in two-layer fluids. J. Fluid Mech.304, 213-229. · Zbl 0853.76013
[62] Llewellyn Smith, S.G. & Young, W.R.2002Conversion of the barotropic tide. J. Phys. Oceanogr.32, 1554-1566.
[63] Machicoane, N., Cortet, P.-P., Voisin, B. & Moisy, F.2015Influence of the multipole order of the source on the decay of an inertial wave beam in a rotating fluid. Phys. Fluids27, 066602.
[64] Mackinnon, J.A., et al.2017Climate process team on internal wave-driven ocean mixing. Bull. Am. Meteorol. Soc.98, 2429-2454.
[65] Magnaudet, J. & Eames, I.2000The motion of high-Reynolds-number bubbles in inhomogeneous flows. Annu. Rev. Fluid Mech.32, 659-708. · Zbl 0989.76082
[66] Magnaudet, J. & Mercier, M.J.2020Particles, drops, and bubbles moving across sharp interfaces and stratified layers. Annu. Rev. Fluid Mech.52, 61-91. · Zbl 1439.76166
[67] Martin, P.A. & Llewellyn Smith, S.G.2011Generation of internal gravity waves by an oscillating horizontal disc. Proc. R. Soc. Lond. A467, 3406-3423. · Zbl 1243.76014
[68] Martin, P.A. & Llewellyn Smith, S.G.2012Generation of internal gravity waves by an oscillating horizontal elliptical plate. SIAM J. Appl. Maths72, 725-739. · Zbl 1343.76008
[69] Maslennikova, V.N.\(1968L_p\)-estimates and the asymptotic behavior as \(t \to \infty\) of a solution of the Cauchy problem for a Sobolev system. Proc. Steklov Inst. Maths103, 123-150.
[70] Mathur, M., Carter, G.S. & Peacock, T.2014Topographic scattering of the low-mode internal tide in the deep ocean. J. Geophys. Res. Oceans119, 2165-2182.
[71] Maxey, M.R. & Riley, J.J.1983Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids26, 883-889. · Zbl 0538.76031
[72] Mercier, M.J., Ghaemsaidi, S.J., Echeverri, P., Mathur, M. & Peacock, T.2012 iTides. Available at: doi:10.5281/zenodo.4421548.
[73] Mercier, M.J., Wang, S., Péméja, J., Ern, P. & Ardekani, A.M.2020Settling disks in a linearly stratified fluid. J. Fluid Mech.885, A2. · Zbl 1460.76280
[74] Milne-Thomson, L.M.1968Theoretical Hydrodynamics, 5th edn. Dover. · Zbl 0164.55802
[75] Miropol’skii, Y.Z.1978Self-similar solutions of the Cauchy problem for internal waves in an unbounded fluid. Izv. Atmos. Ocean. Phys.14, 673-679.
[76] More, R.V. & Ardekani, A.M.2023Motion in stratified fluids. Annu. Rev. Fluid Mech.55, 157-192.
[77] More, R.V., Ardekani, M.N., Brandt, L. & Ardekani, A.M.2021Orientation instability of settling spheroids in a linearly density-stratified fluid. J. Fluid Mech.929, A7. · Zbl 1495.76121
[78] Morse, P.M. & Feshbach, H.1953Methods of Theoretical Physics. Part I. Feshbach Publishing. · Zbl 0051.40603
[79] Motygin, O.V. & Sturova, I.V.2002Wave motions in a two-layer fluid driven by small oscillations of a cylinder intersecting the interface. Fluid Dyn.37, 600-613. · Zbl 1161.76387
[80] Newman, J.N.1978The theory of ship motions. Adv. Appl. Mech.18, 221-283.
[81] Newman, J.N.2017Marine Hydrodynamics, 40th Anniv. edn. MIT Press.
[82] Ogilvie, T.F.1964 Recent progress toward the understanding and prediction of ship motions. In Proceedings of the 5th Symposium on Naval Hydrodynamics (ed. J.K. Lunde & S.W. Doroff), pp. 3-80. U.S. Government Printing Office. Available at: http://resolver.tudelft.nl/uuid:73776ccf-258f-4d5d-ab6c-88c95a002091.
[83] Olver, F.W.J., Lozier, D.W., Boisvert, R.F. & Clark, C.W.2010NIST Handbook of Mathematical Functions. NIST/Cambridge University Press. · Zbl 1198.00002
[84] Palierne, J.F.1999On the motion of rigid bodies in incompressible inviscid fluids of inhomogeneous density. J. Fluid Mech.393, 89-98. · Zbl 0954.76011
[85] Papoutsellis, C.E., Mercier, M.J. & Grisouard, N.2023Internal tide generation from non-uniform barotropic body forcing. J. Fluid Mech.964, A20. · Zbl 1527.76009
[86] Pétrélis, F., Llewellyn Smith, S. & Young, W.R.2006Tidal conversion at a submarine ridge. J. Phys. Oceanogr.36, 1053-1071.
[87] Pierce, A.D.2019Acoustics, 3rd edn. Springer.
[88] Pletner, Y.D.1991The fundamental solution of the equation of internal waves and some initial-boundary value problems. Comput. Maths Math. Phys.31 (4), 79-88. · Zbl 0779.35093
[89] Riley, J.J., Metcalfe, R.W. & Weissman, M.A.1981Direct numerical simulations of homogeneous turbulence in density-stratified fluids. AIP Conf. Proc.76, 79-112.
[90] Roddier, F.1971Distributions et Transformation de Fourier. McGraw-Hill.
[91] Saffman, P.G.1992Vortex Dynamics. Cambridge University Press. · Zbl 0777.76004
[92] Sarkar, S. & Scotti, A.2017From topographic internal gravity waves to turbulence. Annu. Rev. Fluid Mech.49, 195-220. · Zbl 1359.76105
[93] Sekerzh-Zen’kovich, S.Y.1979A fundamental solution of the internal-wave operator. Sov. Phys. Dokl.24, 347-349. · Zbl 0429.76018
[94] Sekerzh-Zen’kovich, S.Y.1981aA uniqueness theorem and an explicit representation of the solution of the Cauchy problem for the equation of internal waves. Sov. Phys. Dokl.26, 21-23. · Zbl 0488.76029
[95] Sekerzh-Zen’kovich, S.Y.1981bConstruction of the fundamental solution for the operator of internal waves. J. Appl. Maths Mech.45, 192-198. · Zbl 0491.76033
[96] Sekerzh-Zen’kovich, S.Y.1982Cauchy problem for equations of internal waves. J. Appl. Maths Mech.46, 758-764. · Zbl 0531.76026
[97] Shmakova, N., Ermanyuk, E. & Flór, J.-B.2017Generation of higher harmonic internal waves by oscillating spheroids. Phys. Rev. Fluids2, 114801.
[98] Simakov, S.L.1993Initial and boundary value problems of internal gravity waves. J. Fluid Mech.248, 55-65. · Zbl 0770.76017
[99] Sobolev, S.L.1954On a new problem of mathematical physics. Izv. Akad. Nauk SSSR Ser. Mat.18, 3-50. In Russian; English transl. in Selected Works of S.L. Sobolev (ed. G.V. Demidenko & V.L. Vaskevich), pp. 279-332. Springer (2006).
[100] Stokes, G.G.1851On the effect of the internal friction of fluids on the motion of pendulums. Trans. Camb. Phil. Soc.9 (2), 8-106.
[101] Sturova, I.V.1994Plane problem of hydrodynamic rocking of a body submerged in a two-layer fluid without forward speed. Fluid Dyn.29, 414-423. · Zbl 0855.76093
[102] Sturova, I.V.1999Problems of radiation and diffraction for a circular cylinder in a stratified fluid. Fluid Dyn.34, 521-533. · Zbl 1006.76017
[103] Sturova, I.V.2001Oscillations of a circular cylinder in a linearly stratified fluid. Fluid Dyn.36, 478-488. · Zbl 1040.76008
[104] Sturova, I.V.2003Added masses of a cylinder intersecting the interface of a two-layer weightless fluid of finite depth. J. Appl. Mech. Tech. Phys.44, 516-521. · Zbl 1113.76316
[105] Sturova, I.V.2006Oscillations of a cylinder piercing a linearly stratified fluid layer. Fluid Dyn.41, 619-628. · Zbl 1200.76041
[106] Sturova, I.V.2011Hydrodynamic loads acting on an oscillating cylinder submerged in a stratified fluid with ice cover. J. Appl. Mech. Tech. Phys.52, 415-426. · Zbl 1272.76071
[107] Sturova, I.V. & Syui, C.2005Hydrodynamic load associated with the oscillations of a cylinder at the interface in a two-layer fluid of finite depth. Fluid Dyn.40, 273-281. · Zbl 1329.76191
[108] Sundukova, A.V.1991Fundamental solution of the gravitational-gyroscopic wave equation and the solvability of the internal and external Dirichlet problems. Comput. Maths Math. Phys.31 (10), 87-93. · Zbl 0786.76095
[109] Ten, I. & Kashiwagi, M.2004Hydrodynamics of a body floating in a two-layer fluid of finite depth. Part 1. Radiation problem. J. Mar. Sci. Technol.9, 127-141.
[110] Teodorovich, E.V. & Gorodtsov, V.A.1980On some singular solutions of internal wave equations. Izv. Atmos. Ocean. Phys.16, 551-553.
[111] Varanasi, A.K., Marath, N.K. & Subramanian, G.2022The rotation of a sedimenting spheroidal particle in a linearly stratified fluid. J. Fluid Mech.933, A17. · Zbl 1514.76112
[112] Voisin, B.1991Internal wave generation in uniformly stratified fluids. Part 1. Green’s function and point sources. J. Fluid Mech.231, 439-480. · Zbl 0850.76809
[113] Voisin, B.2003Limit states of internal wave beams. J. Fluid Mech.496, 243-293. · Zbl 1066.76025
[114] Voisin, B.2007 Added mass effects on internal wave generation. In Proceedings of the 5th International Symposium on Environmental Hydraulics (ed. D.L. Boyer & O. Alexandrova). Available at: https://hal.archives-ouvertes.fr/hal-00268817.
[115] Voisin, B.2009 Added mass in density-stratified fluids. In Actes du 19ème Congrès Français de Mécanique (ed. C. Rey, P. Bontoux & A. Chrisochoos). Available at: https://hal.archives-ouvertes.fr/hal-00583091.
[116] Voisin, B.2021Boundary integrals for oscillating bodies in stratified fluids. J. Fluid Mech.927, A3. · Zbl 1476.76018
[117] Voisin, B.2024Buoyancy oscillations. J. Fluid Mech.984, A29. · Zbl 07833666
[118] Voisin, B., Ermanyuk, E.V. & Flór, J.-B.2011Internal wave generation by oscillation of a sphere, with application to internal tides. J. Fluid Mech.666, 308-357. · Zbl 1225.76096
[119] Wehausen, J.V.1971The motion of floating bodies. Annu. Rev. Fluid Mech.3, 237-268. · Zbl 0283.76014
[120] Whalen, C.B., De Lavergne, C., Naveira Garabato, A.C., Klymak, J.M., Mackinnon, J.A. & Sheen, K.L.2020Internal wave-driven mixing: governing processes and consequences for climate. Nat. Rev. Earth Environ.1, 606-621.
[121] Wu, J.1969Mixed region collapse with internal wave generation in a density-stratified medium. J. Fluid Mech.35, 531-544.
[122] Yeung, R. & Nguyen, T.1999 Radiation and diffraction of waves in a two-layer fluid. In Proceedings of the 22nd Symposium on Naval Hydrodynamics (ed. Nat. Res. Counc.), pp. 875-891. National Academy Press. Available at: doi:10.17226/9771.
[123] You, Y.-X., Shi, Q. & Miao, G.-P.2007The radiation and diffraction of water waves by a bottom-mounted circular cylinder in a two-layer fluid. J. Hydrodyn. B19, 1-8.
[124] Zavol’skii, N.A. & Zaitsev, A.A.1984Development of internal waves generated by a concentrated pulse source in an infinite uniformly stratified fluid. J. Appl. Mech. Tech. Phys.25, 862-867.
[125] Zhang, H.P., King, B. & Swinney, H.L.2007Experimental study of internal gravity waves generated by supercritical topography. Phys. Fluids19, 096602. · Zbl 1182.76869
[126] Zhang, W. & Stone, H.A.1998Oscillatory motions of circular disks and nearly spherical particles in viscous flows. J. Fluid Mech.367, 329-358. · Zbl 0912.76015
[127] Zilman, G., Kagan, L. & Miloh, T.1996Hydrodynamics of a body moving over a mud layer. Part II. Added-mass and damping coefficients. J. Ship Res.40, 39-45.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.