×

Buoyancy oscillations. (English) Zbl 07833666

Summary: The oscillations of buoyant bodies in stratified fluids are deduced from the variations of their added mass. Three configurations are considered: a body displaced from its neutral level then released; a Cartesian diver set into oscillation by a modulation of the hydrostatic pressure, then released; and a body attached to a pendulum to which an impulse is applied. The first configuration is related to the dynamics of Lagrangian floats in the ocean. Two particular bodies are considered: an elliptic cylinder of horizontal axis, typical of two-dimensional bodies; and a spheroid of vertical axis, typical of three-dimensional bodies. The ultimate motion of the body consists of oscillations at the buoyancy frequency with an amplitude decaying algebraically with time. Before that, the resonant response of the system is observed, either aperiodic exponential decay when the system has no intrinsic dynamics, or exponentially damped oscillation otherwise. Comparison with available measurements demonstrates the need to include viscous dissipation in the analysis. At high Stokes number, dissipation comes from the Basset-Boussinesq memory force and is affected negligibly by the stratification; at low Stokes number, dissipation comes from Stokes resistance and exhibits a significant effect of the stratification.

MSC:

76-XX Fluid mechanics
Full Text: DOI

References:

[1] Aagaard, E.E. & Ewart, T.E.1973 Characteristics of a deep-sea neutrally buoyant float. In Ocean 73 - IEEE International Conference on Engineering in the Ocean Environment (ed. E.W. Early & T.F. Hueter), pp. 362-368. IEEE.
[2] Abate, J., Choudhury, G.L. & Whitt, W.2000 An introduction to numerical transform inversion and its application to probability models. In Computational Probability (ed. W.K. Grassmann), pp. 257-273. Springer. · Zbl 0945.65008
[3] Akulenko, L.D. & Baidulov, V.G.2019Extreme properties of oscillations of an elliptical float. Dokl. Phys.64, 297-300.
[4] Akulenko, L.D., Mikhailov, S.A. & Nesterov, S.V.1990Oscillations of a float in a heterogeneous fluid in relation to the shape of its surface. Mech. Solids25 (5), 24-31.
[5] Akulenko, L.D., Mikhailov, S.A., Nesterov, S.V. & Chaikovskii, A.A.1988Numerical-analytic investigation of oscillations of a rigid body at the interface between two liquids. Mech. Solids23 (4), 54-60.
[6] Akulenko, L.D. & Nesterov, S.V.1987Oscillations of a solid at the interface between two fluids. Mech. Solids22 (5), 30-36.
[7] Ardekani, A.M., Doostmohammadi, A. & Desai, N.2017Transport of particles, drops, and small organisms in density stratified fluids. Phys. Rev. Fluids2, 100503.
[8] Baidulov, V.G.2022Parametric control of float oscillations. Mech. Solids57, 562-569. · Zbl 07672555
[9] Barenblatt, G.I.1978Dynamics of turbulent spots and intrusions in a stably stratified fluid. Izv. Atmos. Ocean. Phys.14, 139-145.
[10] Basset, A.B.1888On the motion of a sphere in a viscous liquid. Phil. Trans. R. Soc. Lond. A179, 43-63. · JFM 20.1003.01
[11] Batchelor, G.K.1967An Introduction to Fluid Dynamics. Cambridge University Press. · Zbl 0152.44402
[12] Beck, R.F. & Liapis, S.1987Transient motions of floating bodies at zero forward speed. J. Ship Res.31, 164-176.
[13] Biró, I., Szabó, K.G., Gyüre, B., Jánosi, I.M. & Tél, T.2008Power-law decaying oscillations of neutrally buoyant spheres in continuously stratified fluid. Phys. Fluids20, 051705. · Zbl 1182.76067
[14] Boussinesq, J.1885Sur la résistance qu’oppose un liquide indéfini en repos, sans pesanteur, au mouvement varié d’une sphère solide qu’il mouille sur toute sa surface, quand les vitesses restent bien continues et assez faibles pour que leurs carrés et produits soient négligeables. C. R. Hebd. Séances Acad. Sci.100, 935-937. · JFM 17.0920.01
[15] Brennen, C.E.1982 A review of added mass and fluid inertial forces. Tech. Rep. CR 82.010. Naval Civil Engineering Laboratory. Available at: https://resolver.caltech.edu/CaltechAUTHORS:BREncel82.
[16] Brouzet, C., Ermanyuk, E.V., Moulin, M., Pillet, G. & Dauxois, T.2017Added mass: a complex facet of tidal conversion at finite depth. J. Fluid Mech.831, 101-127. · Zbl 1421.76050
[17] Cairns, J., Munk, W. & Winant, C.1979On the dynamics of neutrally buoyant capsules; an experimental drop in Lake Tahoe. Deep-Sea Res. A26, 369-381.
[18] Cairns, J.L.1975Internal wave measurements from a midwater float. J. Geophys. Res.80, 299-306.
[19] Candelier, F., Mehaddi, R. & Vauquelin, O.2014The history force on a small particle in a linearly stratified fluid. J. Fluid Mech.749, 184-200.
[20] Cerasoli, C.P.1978Experiments on buoyant-parcel motion and the generation of internal gravity waves. J. Fluid Mech.86, 247-271.
[21] Chashechkin, Y.D. & Levitskii, V.V.1999Hydrodynamics of free oscillations of a sphere on the neutral-buoyancy horizon in continuously stratified fluid. Dokl. Phys.44, 48-53.
[22] Chashechkin, Y.D. & Levitskii, V.V.2003Pattern of flow around a sphere oscillating an neutrally buoyancy horizon in a continuously stratified fluid. J. Vis.6, 59-65.
[23] Chashechkin, Y.D. & Prikhod’ko, Y.V.2006The structure of flows occurring under the free oscillations of a cylinder on the neutral-buoyancy horizon in a continuously stratified fluid. Dokl. Phys.51, 215-218.
[24] Chashechkin, Y.D. & Prikhod’ko, Y.V.2007Regular and singular flow components for stimulated and free oscillations of a sphere in continuously stratified liquid. Dokl. Phys.52, 261-265. · Zbl 1423.76079
[25] Cohen, A.M.2007Numerical Methods for Laplace Transform Inversion. Springer. · Zbl 1127.65094
[26] D’Asaro, E.2018 Oceanographic floats: principles of operation. In Observing the Oceans in Real Time (ed. R. Venkatesan, A. Tandon, E. D’Asaro & M.A. Atmanand), pp. 77-98. Springer.
[27] D’Asaro, E.A.2003Performance of autonomous Lagrangian floats. J. Atmos. Ocean. Technol.20, 896-911.
[28] D’Asaro, E.A., Farmer, D.M., Osse, J.T. & Dairiki, G.T.1996A Lagrangian float. J. Atmos. Ocean. Technol.13, 1230-1246.
[29] Damaren, C.J.2000Time-domain floating body dynamics by rational approximation of the radiation impedance and diffraction mapping. Ocean Engng27, 687-705.
[30] Davies, B. & Martin, B.1979Numerical inversion of the Laplace transform: a survey and comparison of methods. J. Comput. Phys.33, 1-32. · Zbl 0416.65077
[31] Davis, A.M.J. & Llewellyn Smith, S.G.2010Tangential oscillations of a circular disk in a viscous stratified fluid. J. Fluid Mech.656, 342-359. · Zbl 1197.76042
[32] Ermanyuk, E.V.2000The use of impulse response functions for evaluation of added mass and damping coefficient of a circular cylinder oscillating in linearly stratified fluid. Exp. Fluids28, 152-159.
[33] Ermanyuk, E.V.2002The rule of affine similitude for the force coefficients of a body oscillating in a uniformly stratified fluid. Exp. Fluids32, 242-251.
[34] Ermanyuk, E.V. & Gavrilov, N.V.2002aForce on a body in a continuously stratified fluid. Part 1. Circular cylinder. J. Fluid Mech.451, 421-443. · Zbl 1005.76017
[35] Ermanyuk, E.V. & Gavrilov, N.V.2002bOscillations of cylinders in a linearly stratified fluid. J. Appl. Mech. Tech. Phys.43, 503-511.
[36] Ermanyuk, E.V. & Gavrilov, N.V.2003Force on a body in a continuously stratified fluid. Part 2. Sphere. J. Fluid Mech.494, 33-50. · Zbl 1063.76504
[37] Fitzgerald, C.J. & Meylan, M.H.2011Generalized eigenfunction method for floating bodies. J. Fluid Mech.667, 544-554. · Zbl 1225.76058
[38] Goodman, L. & Levine, E.R.1990Vertical motion of neutrally buoyant floats. J. Atmos. Ocean. Technol.7, 38-49.
[39] Gorodtsov, V.A.1991Collapse of asymmetric perturbations in a stratified fluid. Fluid Dyn.26, 834-840. · Zbl 0788.76091
[40] Gorodtsov, V.A.1992Behavior of a sphere in an ideal, uniformly stratified medium. Fluid Mech. Res.21 (6), 100-106. · Zbl 0837.76092
[41] Gould, W.J.2005From Swallow floats to Argo – the development of neutrally buoyant floats. Deep-Sea Res. II52, 529-543.
[42] Güémez, J., Fiolhais, C. & Fiolhais, M.2002The Cartesian diver and the fold catastrophe. Am. J. Phys.70, 710-714.
[43] Hanazaki, H., Nakamura, S. & Yoshikawa, H.2015Numerical simulation of jets generated by a sphere moving vertically in a stratified fluid. J. Fluid Mech.765, 424-451.
[44] Happel, J. & Brenner, H.1983Low Reynolds Number Hydrodynamics, 2nd edn. Springer.
[45] Harris, J.B. & Pittman, J.F.T.1975Equivalent ellipsoidal axis ratios of slender rod-like particles. J. Colloid Interface Sci.50, 280-282.
[46] Hartman, R.J. & Lewis, H.W.1972Wake collapse in a stratified fluid: linear treatment. J. Fluid Mech.51, 613-618. · Zbl 0287.76068
[47] Holdsworth, A.M., Barrett, K.J. & Sutherland, B.R.2012Axisymmetric intrusions in two-layer and uniformly stratified environments with and without rotation. Phys. Fluids24, 036603.
[48] Holdsworth, A.M., Décamp, S. & Sutherland, B.R.2010The axisymmetric collapse of a mixed patch and internal wave generation in uniformly stratified fluid. Phys. Fluids22, 106602.
[49] Hurlen, E.C.2006 The motions and wave fields produced by an ellipse moving through a stratified fluid. PhD thesis, University of California at San Diego. Available at: https://escholarship.org/uc/item/40m4494n.
[50] Hurlen, E.C. & Llewellyn Smith, S.G.2024The fall of an ellipse in a stratified fluid. Fluid Dyn. Res.(in preparation).
[51] Hurley, D.G. & Hood, M.J.2001The generation of internal waves by vibrating elliptic cylinders. Part 3. Angular oscillations and comparison of theory with recent experimental observations. J. Fluid Mech.433, 61-75. · Zbl 1107.76317
[52] Den Iseger, P.2006Numerical transform inversion using Gaussian quadrature. Probab. Engng Inf. Sci.20, 1-44. · Zbl 1095.65116
[53] Jones, T.B.1982Generation and propagation of acoustic gravity waves. Nature299, 488-489.
[54] Kabarowski, J.K. & Khair, A.S.2020The force on a slender particle under oscillatory translational motion in unsteady Stokes flow. J. Fluid Mech.884, A44. · Zbl 1460.76183
[55] Kao, T.W.1976Principal stage of wake collapse in a stratified fluid: two-dimensional theory. Phys. Fluids19, 1071-1074.
[56] Korotkin, A.I.2009Added Masses of Ship Structures. Springer.
[57] Kotik, J. & Lurye, J.1964 Some topics in the theory of coupled ship motions. In Proceedings of the Fifth Symposium on Naval Hydrodynamics (ed. J.K. Lunde & S.W. Doroff), pp. 407-424. US Government Printing Office. Available at: http://resolver.tudelft.nl/uuid:73776ccf-258f-4d5d-ab6c-88c95a002091.
[58] Kotik, J. & Lurye, J.1968Heave oscillations of a floating cylinder or sphere. Schiffstechnik15, 37-38.
[59] Kumar, K.K.2007VHF radar investigations on the role of mechanical oscillator effect in exciting convectively generated gravity waves. Geophys. Res. Lett.34, L01803.
[60] Lamb, H.1932Hydrodynamics, 6th edn. Cambridge University Press. · JFM 58.1298.04
[61] Landau, L.D. & Lifshitz, E.M.1987Fluid Mechanics, 2nd edn. Pergamon. · Zbl 0655.76001
[62] Lane, T.P.2008The vortical response to penetrative convection and the associated gravity-wave generation. Atmos. Sci. Lett.9, 103-110.
[63] Larsen, L.H.1969Oscillations of a neutrally buoyant sphere in a stratified fluid. Deep-Sea Res.16, 587-603.
[64] Lavrentiev, L. & Chabat, B.1972Méthodes de la théorie des fonctions d’une variable complexe. Mir. · Zbl 0249.30002
[65] Lawrence, C.J. & Weinbaum, S.1986The force on an axisymmetric body in linearized, time-dependent motion: a new memory term. J. Fluid Mech.171, 209-218. · Zbl 0611.76048
[66] Lawrence, C.J. & Weinbaum, S.1988The unsteady force on a body at low Reynolds number; the axisymmetric motion of a spheroid. J. Fluid Mech.189, 463-489. · Zbl 0658.76031
[67] Le Dizès, S. & Le Bars, M.2017Internal shear layers from librating objects. J. Fluid Mech.826, 653-675. · Zbl 1430.76479
[68] Le Gal, P., Castillo Morales, B., Hernandez-Zapata, S. & Ruiz Chavarria, G.2022Swimming of a ludion in a stratified sea. J. Fluid Mech.931, A14. · Zbl 1507.76035
[69] Levitskii, V.V. & Chashechkin, Y.D.1999Natural oscillations of a neutrally buoyant body in a continuously stratified fluid. Fluid Dyn.34, 641-651.
[70] Lighthill, J.1978Waves in Fluids. Cambridge University Press. · Zbl 0375.76001
[71] Loewenberg, M.1993aStokes resistance, added mass, and Basset force for arbitrarily oriented, finite-length cylinders. Phys. Fluids A5, 765-767. · Zbl 0777.76031
[72] Loewenberg, M.1993bThe unsteady Stokes resistance of arbitrarily oriented, finite-length cylinders. Phys. Fluids A5, 3004-3006. · Zbl 0790.76025
[73] Loewenberg, M.1994aAxisymmetric unsteady Stokes flow past an oscillating finite-length cylinder. J. Fluid Mech.265, 265-288. · Zbl 0808.76020
[74] Loewenberg, M.1994bAsymmetric, oscillatory motion of a finite-length cylinder: the macroscopic effect of particle edges. Phys. Fluids6, 1095-1107. · Zbl 0834.76017
[75] Maas, L.R.M.2011Topographies lacking tidal conversion. J. Fluid Mech.684, 5-24. · Zbl 1241.76088
[76] Magnaudet, J. & Mercier, M.J.2020Particles, drops, and bubbles moving across sharp interfaces and stratified layers. Annu. Rev. Fluid Mech.52, 61-91. · Zbl 1439.76166
[77] Maskell, S.J. & Ursell, F.1970The transient motion of a floating body. J. Fluid Mech.44, 303-313. · Zbl 0215.29003
[78] Mciver, M. & Mciver, P.2011Water waves in the time domain. J. Engng Maths70, 111-128. · Zbl 1254.76026
[79] Mclaren, T.I., Pierce, A.D., Fohl, T. & Murphy, B.L.1973An investigation of internal gravity waves generated by a buoyantly rising fluid in a stratified medium. J. Fluid Mech.57, 229-240.
[80] Meng, J.C.S. & Rottman, J.W.1988Linear internal waves generated by density and velocity perturbations in a linearly stratified fluid. J. Fluid Mech.186, 419-444. · Zbl 0643.76024
[81] Meylan, M.H.2014The time-dependent motion of a floating elastic or rigid body in two dimensions. Appl. Ocean Res.46, 54-61.
[82] Milne-Thomson, L.M.1968Theoretical Hydrodynamics, 5th edn. Dover. · Zbl 0164.55802
[83] More, R.V. & Ardekani, A.M.2023Motion in stratified fluids. Annu. Rev. Fluid Mech.55, 157-192.
[84] Morton, B.R., Taylor, G. & Turner, J.S.1956Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond. A234, 1-23. · Zbl 0074.45402
[85] Newman, J.N.1985Transient axisymmetric motion of a floating cylinder. J. Fluid Mech.157, 17-33. · Zbl 0576.76020
[86] Nuriev, A.N., Egorov, A.G. & Kamalutdinov, A.M.2021Hydrodynamic forces acting on the elliptic cylinder performing high-frequency low-amplitude multi-harmonic oscillations in a viscous fluid. J. Fluid Mech.913, A40. · Zbl 1461.76102
[87] Orlanski, I. & Ross, B.B.1973Numerical simulation of the generation and breaking of internal gravity waves. J. Geophys. Res.78, 8808-8826.
[88] Pierce, A. & Coroniti, S.1966A mechanism for the generation of acoustic-gravity waves during thunderstorm formation. Nature210, 1209-1210.
[89] Pot, G. & Jami, A.1991Some numerical results in 3-D transient linear naval hydrodynamics. J. Ship Res.35, 295-303.
[90] Pozrikidis, C.1989A singularity method for unsteady linearized flow. Phys. Fluids A1, 1508-1520. · Zbl 0692.76037
[91] Prikhod’ko, Y.V. & Chashechkin, Y.D.2006Hydrodynamics of natural oscillations of neutrally buoyant bodies in a layer of continuously stratified fluid. Fluid Dyn.41, 545-554.
[92] Pyl’nev, Y.V. & Razumeenko, Y.V.1991Damped oscillations of a float of special shape, deeply immersed in a homogeneous and stratified fluid. Mech. Solids26 (4), 67-76.
[93] Renaud, A. & Venaille, A.2019Boundary streaming by internal waves. J. Fluid Mech.858, 71-90. · Zbl 1415.86019
[94] Rossby, T.2007 Evolution of Lagrangian methods in oceanography. In Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics (ed. A. Griffa, A.D. Kirwan, Jr, A.J. Mariano, T. Özgökmen & H.T. Rossby), pp. 1-38. Cambridge University Press. · Zbl 1142.76305
[95] Rossby, T., Dorson, D. & Fontaine, J.1986The RAFOS system. J. Atmos. Ocean. Technol.3, 672-679.
[96] Sharman, R.D. & Trier, S.B.2019Influences of gravity waves on convectively induced turbulence (CIT): a review. Pure Appl. Geophys.176, 1923-1958.
[97] Sretenskii, L.N.1937On damping of the vertical oscillations of the centre of gravity of floating bodies. Trudy TsAGI330, 1-12 (In Russian).
[98] Stokes, G.G.1851On the effect of the internal friction of fluids on the motion of pendulums. Trans. Camb. Phil. Soc.9 (2), 8-106.
[99] Stommel, H.1955Direct measurements of sub-surface currents. Deep-Sea Res.2, 284-285.
[100] Sutherland, B.R.2010Internal Gravity Waves. Cambridge University Press. · Zbl 1217.83001
[101] Sutherland, B.R., Chow, A.N.F. & Pittman, T.P.2007The collapse of a mixed patch in stratified fluid. Phys. Fluids19, 116602. · Zbl 1182.76734
[102] Sutherland, B.R., Flynn, M.R. & Dohan, K.2004Internal wave excitation from a collapsing mixed region. Deep-Sea Res. II51, 2889-2904.
[103] Swallow, J.C.1955A neutral-buoyancy float for measuring deep currents. Deep-Sea Res.3, 74-81.
[104] Swift, D.D. & Riser, S.C.1994RAFOS floats: defining and targeting surfaces of neutral buoyancy. J. Atmos. Ocean. Technol.11, 1079-1092.
[105] Torres, C.R., Hanazaki, H., Ochoa, J., Castillo, J. & Van Woert, M.2000Flow past a sphere moving vertically in a stratified diffusive fluid. J. Fluid Mech.417, 211-236. · Zbl 0971.76023
[106] Ursell, F.1964The decay of the free motion of a floating body. J. Fluid Mech.19, 305-319. · Zbl 0137.45202
[107] Vasil’ev, A.Y. & Chashechkin, Y.D.2009Damping of the free oscillations of a neutral buoyancy sphere in a viscous stratified fluid. J. Appl. Maths Mech.73, 558-565. · Zbl 1272.76097
[108] Vasil’ev, A.Y., Kistovich, A.V. & Chashechkin, Y.D.2007Free oscillations of a balanced ball on the horizon of neutral buoyancy in a continuously stratified fluid. Dokl. Phys.52, 596-599. · Zbl 1379.76004
[109] Voisin, B.2007 Added mass effects on internal wave generation. In Proceedings of the Fifth International Symposium on Environmental Hydraulics (ed. D.L. Boyer & O. Alexandrova). Available at: https://hal.archives-ouvertes.fr/hal-00268817.
[110] Voisin, B.2021Boundary integrals for oscillating bodies in stratified fluids. J. Fluid Mech.927, A3. · Zbl 1476.76018
[111] Voisin, B.2024Added mass of oscillating bodies in stratified fluids. J. Fluid Mech. (accepted).
[112] Voorhis, A.D.1971 Response characteristics of the neutrally buoyant float. Tech. Rep. 71-73. Woods Hole Oceanographic Institution. Available at: doi:10.1575/1912/24369.
[113] Voth, G.A. & Soldati, A.2017Anisotropic particles in turbulence. Annu. Rev. Fluid Mech.49, 249-276. · Zbl 1359.76309
[114] Warren, F.W.G.1968Gravity wave damping of hydrostatic oscillations for a buoyant disk. J. Fluid Mech.31, 309-319. · Zbl 0153.28701
[115] Wehausen, J.V.1971The motion of floating bodies. Annu. Rev. Fluid Mech.3, 237-268. · Zbl 0283.76014
[116] Wehausen, J.V. & Laitone, E.V.1960 Surface waves. In Encyclopedia of Physics (ed. S. Flügge & C. Truesdell), vol. 9, pp. 446-778. Springer. Available at: http://surfacewaves.berkeley.edu. · Zbl 1339.76009
[117] Weinheimer, A.J.1987Application of the Stokes drag on spheroids to the drag on disks and cylinders. J. Atmos. Sci.44, 2674-2676.
[118] Winant, C.D.1974The descent of neutrally buoyant floats. Deep-Sea Res.21, 445-453.
[119] Wolgamot, H.A., Meylan, M.H. & Reid, C.D.2017Multiply heaving bodies in the time-domain: symmetry and complex resonances. J. Fluids Struct.69, 232-251.
[120] Wu, J.1969Mixed region collapse with internal wave generation in a density-stratified medium. J. Fluid Mech.35, 531-544.
[121] Yeung, R.W.1982The transient heaving motion of floating cylinders. J. Engng Maths16, 97-119. · Zbl 0499.76026
[122] Zatsepin, A.G., Fedorov, K.N., Vorapayev, S.I. & Pavlov, A.M.1978Experimental study of the spreading of a mixed region in a stably stratified fluid. Izv. Atmos. Ocean. Phys.14, 170-173.
[123] Zhang, J., Mercier, M.J. & Magnaudet, J.2019Core mechanisms of drag enhancement on bodies settling in a stratified fluid. J. Fluid Mech.875, 622-656. · Zbl 1421.76083
[124] Zhang, W. & Stone, H.A.1998Oscillatory motions of circular disks and nearly spherical particles in viscous flows. J. Fluid Mech.367, 329-358. · Zbl 0912.76015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.