×

A stable operational matrix based computational approach for multi-term fractional wave model arise in a dielectric medium. (English) Zbl 07853106

Summary: The semi-discretization technique combined with an operational matrix approach is proposed to solve the fractional order wave equation that arises in a dielectric medium. In this approach, Caputo’s derivative terms of order \(\alpha\) and \(\beta\) are approximated by the difference scheme of order \(\mathcal{O}(\tau^{3 - \alpha})\) and \(\mathcal{O}(\tau^{3 - \beta})\), \(1 < \beta < \alpha < 2\), respectively, to transform the proposed fractional order wave equation into a system of second order ordinary differential equations (ODEs). To solve the ODEs, the operational matrix method is used which has several advantages over the several ODE solvers. The convergence of the approximation taken in the spatial direction at the \(k\)th level of time is established. Moreover, the scheme is unconditionally stable with the rate of convergence \(\mathcal{O}(\tau^{3 - \alpha})\) and \(\mathcal{O}\left(\frac{1}{2^{N + 1}(N + 1)!}\right)\) in the time and spatial direction, respectively. Finally, test examples are included to show the efficiency and accuracy of the proposed method and to support the theoretical results.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35Rxx Miscellaneous topics in partial differential equations
65Lxx Numerical methods for ordinary differential equations

Software:

FODE
Full Text: DOI

References:

[1] Leibniz, G. W., Mathematische schriften, hrsg. v, 1856, CI Gerhardt. Bd. III, Halle: HW Schmidt (Nachdruck Hildesheim: Olms, 1962)
[2] Torvik, P. J.; Bagley, R. L., On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech., 51, 2, 294-298, 1984 · Zbl 1203.74022
[3] Caputo, M.; Mainardi, F., A new dissipation model based on memory mechanism, Pure Appl. Geophys., 91, 1, 134-147, 1971 · Zbl 1213.74005
[4] Westerlund, S., Causality, report no. 940426, 1994, University of Kalmar
[5] Ding, H.; Zhang, Y., New numerical methods for the Riesz space fractional partial differential equations, Comput. Math. Appl., 63, 7, 1135-1146, 2012 · Zbl 1247.65135
[6] Patel, V. K.; Singh, S.; Singh, V. K., Two-dimensional wavelets collocation method for electromagnetic waves in dielectric media, J. Comput. Appl. Math., 317, 307-330, 2017 · Zbl 1361.78004
[7] Su, L.; Wang, W.; Xu, Q., Finite difference methods for fractional dispersion equations, Appl. Math. Comput., 216, 11, 3329-3334, 2010 · Zbl 1193.65158
[8] Alikhanov, A.; Beshtokov, M.; Mehra, M., The Crank-Nicolson type compact difference schemes for a loaded time-fractional Hallaire equation, Fract. Calc. Appl. Anal., 24, 4, 1231-1256, 2021 · Zbl 1498.65133
[9] Zubair, M.; Mughal, M. J.; Naqvi, Q. A., Differential electromagnetic equations in fractional space, (Electromagnetic Fields and Waves in Fractional Dimensional Space, 2012, Springer), 7-16 · Zbl 1244.78001
[10] Engheta, N., Fractional curl operator in electromagnetics, Microw. Opt. Technol. Lett., 17, 2, 86-91, 1998
[11] Zubair, M.; Mughal, M. J.; Naqvi, Q. A., Electromagnetic wave propagation in fractional space, (Electromagnetic Fields and Waves in Fractional Dimensional Space, 2012, Springer), 27-60 · Zbl 1244.78001
[12] Naqvi, Q.; Abbas, M., Complex and higher order fractional curl operator in electromagnetics, Opt. Commun., 241, 4-6, 349-355, 2004
[13] Tarasov, V. E., Fractional equations of Curie-von Schweidler and Gauss laws, J. Phys.: Condens. Matter, 20, 14, Article 145212 pp., 2008
[14] Tarasov, V. E., Fractional integro-differential equations for electromagnetic waves in dielectric media, Theoret. Math. Phys., 158, 3, 355-359, 2009 · Zbl 1177.78020
[15] Tang, J.; Resurreccion, F., Electromagnetic basis of microwave heating, (Development of Packaging and Products for Use in Microwave Ovens, 2009, Elsevier), 3-38e
[16] Podlubny, I., An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Math. Sci. Eng., 198, 1999 · Zbl 0924.34008
[17] Zeng, F.; Li, C.; Liu, F.; Turner, I., The use of finite difference/element approaches for solving the time-fractional subdiffusion equation, SIAM J. Sci. Comput., 35, 6, A2976-A3000, 2013 · Zbl 1292.65096
[18] Sun, Z.; Wu, X., A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56, 2, 193-209, 2006 · Zbl 1094.65083
[19] Dehghan, M.; Abbaszadeh, M., A finite difference/finite element technique with error estimate for space fractional tempered diffusion-wave equation, Comput. Math. Appl., 75, 8, 2903-2914, 2018 · Zbl 1415.65224
[20] Deng, W., Finite element method for the space and time fractional Fokker-Planck equation, SIAM J. Numer. Anal., 47, 1, 204-226, 2008 · Zbl 1416.65344
[21] Schmidt, A.; Gaul, L., Finite element formulation of viscoelastic constitutive equations using fractional time derivatives, Nonlinear Dynam., 29, 1-4, 37-55, 2002 · Zbl 1028.74013
[22] Jin, B.; Lazarov, R.; Zhou, Z., Error estimates for a semidiscrete finite element method for fractional order parabolic equations, SIAM J. Numer. Anal., 51, 1, 445-466, 2013 · Zbl 1268.65126
[23] Li, X.; Xu, C., A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal., 47, 3, 2108-2131, 2009 · Zbl 1193.35243
[24] Bueno-Orovio, A.; Kay, D.; Burrage, K., Fourier spectral methods for fractional-in-space reaction-diffusion equations, BIT Numer. Math., 54, 4, 937-954, 2014 · Zbl 1306.65265
[25] Doha, E.; Bhrawy, A.; Ezz-Eldien, S., Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations, Appl. Math. Model., 35, 12, 5662-5672, 2011 · Zbl 1228.65126
[26] Esmaeili, S.; Shamsi, M.; Luchko, Y., Numerical solution of fractional differential equations with a collocation method based on Müntz polynomials, Comput. Math. Appl., 62, 3, 918-929, 2011 · Zbl 1228.65132
[27] Yang, Q.; Turner, I.; Moroney, T.; Liu, F., A finite volume scheme with preconditioned Lanczos method for two-dimensional space-fractional reaction-diffusion equations, Appl. Math. Model., 38, 15-16, 3755-3762, 2014 · Zbl 1429.65215
[28] Li, Y.; Zhao, W., Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations, Appl. Math. Comput., 216, 8, 2276-2285, 2010 · Zbl 1193.65114
[29] Saadatmandi, A.; Dehghan, M., A new operational matrix for solving fractional-order differential equations, Comput. Math. Appl., 59, 3, 1326-1336, 2010 · Zbl 1189.65151
[30] Keshavarz, E.; Ordokhani, Y.; Razzaghi, M., Bernoulli wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations, Appl. Math. Model., 38, 24, 6038-6051, 2014 · Zbl 1429.65170
[31] Lakestani, M.; Dehghan, M.; Irandoust-Pakchin, S., The construction of operational matrix of fractional derivatives using B-spline functions, Commun. Nonlinear Sci. Numer. Simul., 17, 3, 1149-1162, 2012 · Zbl 1276.65015
[32] Dehghan, M.; Manafian, J.; Saadatmandi, A., Solving nonlinear fractional partial differential equations using the homotopy analysis method, Numer. Methods Partial Differ.Equ. Int. J., 26, 2, 448-479, 2010 · Zbl 1185.65187
[33] Dehghan, M.; Manafian, J.; Saadatmandi, A., The solution of the linear fractional partial differential equations using the homotopy analysis method, Z. Nat.forsch. A, 65, 11, 935, 2010
[34] Dehghan, M.; Safarpoor, M.; Abbaszadeh, M., Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations, J. Comput. Appl. Math., 290, 174-195, 2015 · Zbl 1321.65129
[35] Srivastava, V.; Rai, K., A multi-term fractional diffusion equation for oxygen delivery through a capillary to tissues, Math. Comput. Modelling, 51, 5-6, 616-624, 2010 · Zbl 1190.35226
[36] Jiang, H.; Liu, F.; Turner, I.; Burrage, K., Analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-diffusion equations on a finite domain, J. Math. Anal. Appl., 389, 2, 1117-1127, 2012 · Zbl 1234.35300
[37] Zhang, H.; Liu, F.; Turner, I.; Yang, Q., Numerical solution of the time fractional Black-Scholes model governing European options, Comput. Math. Appl., 71, 9, 1772-1783, 2016 · Zbl 1443.91335
[38] Singh, S.; Patel, V. K.; Singh, V. K.; Tohidi, E., Numerical solution of nonlinear weakly singular partial integro-differential equation via operational matrices, Appl. Math. Comput., 298, 310-321, 2017 · Zbl 1411.65139
[39] Liu, Z.; Cheng, A.; Li, X., A novel finite difference discrete scheme for the time fractional diffusion-wave equation, Appl. Numer. Math., 134, 17-30, 2018 · Zbl 1397.65141
[40] Mirzaee, F.; Samadyar, N., Combination of finite difference method and meshless method based on radial basis functions to solve fractional stochastic advection-diffusion equations, Eng. Comput., 1-14, 2019
[41] Samadyar, N.; Mirzaee, F., Numerical solution of two-dimensional weakly singular stochastic integral equations on non-rectangular domains via radial basis functions, Eng. Anal. Bound. Elem., 101, 27-36, 2019 · Zbl 1418.60090
[42] Mirzaee, F.; Alipour, S.; Samadyar, N., Numerical solution based on hybrid of block-pulse and parabolic functions for solving a system of nonlinear stochastic Itô-Volterra integral equations of fractional order, J. Comput. Appl. Math., 349, 157-171, 2019 · Zbl 1405.60103
[43] Shakeri, F.; Dehghan, M., The method of lines for solution of the one-dimensional wave equation subject to an integral conservation condition, Comput. Math. Appl., 56, 9, 2175-2188, 2008 · Zbl 1165.65384
[44] Liu, F.; Bhatia, S., Solution techniques for transport problems involving steep concentration gradients: application to noncatalytic fluid solid reactions, Comput. Chem. Eng., 25, 9-10, 1159-1168, 2001
[45] Liu, F.; Turner, I.; Anh, V., An unstructured mesh finite volume method for modelling saltwater intrusion into coastal aquifers, Korean J. Comput. Appl. Math., 9, 2, 391-407, 2002 · Zbl 1002.76074
[46] Joubert, S. V.; Greeff, J. C.; Fay, T. H., Can CAS be trusted?, (The Buffelspoort TIME2008 Peer-Reviewed Conference Proceedings, 2008), 22-26
[47] Singh, S.; Patel, V. K.; Singh, V. K., Operational matrix approach for the solution of partial integro-differential equation, Appl. Math. Comput., 283, 195-207, 2016 · Zbl 1410.65467
[48] Tohidi, E.; Zak, M. K., A new matrix approach for solving second-order linear matrix partial differential equations, Mediterr. J. Math., 13, 3, 1353-1376, 2016 · Zbl 1350.35061
[49] Eslahchi, M.; Dehghan, M., Application of Taylor series in obtaining the orthogonal operational matrix, Comput. Math. Appl., 61, 9, 2596-2604, 2011 · Zbl 1221.33016
[50] Yousefi, S.; Behroozifar, M.; Dehghan, M., Numerical solution of the nonlinear age-structured population models by using the operational matrices of Bernstein polynomials, Appl. Math. Model., 36, 3, 945-963, 2012 · Zbl 1243.65127
[51] Shamsi, M.; Razzaghi, M., Numerical solution of the controlled duffing oscillator by the interpolating scaling functions, J. Electromagn. Waves Appl., 18, 5, 691-705, 2004
[52] Kreyszig, E., Introductory Functional Analysis with Applications, Vol. 17, 1991, John Wiley & Sons
[53] Devi, V.; Maurya, R. K.; Patel, V. K.; Singh, V. K., Lagrange operational matrix methods to lane-Emden, riccati’s and bessel’s equations, Int. J. Appl. Comput. Math., 5, 3, 79, 2019 · Zbl 07078997
[54] Maurya, R. K.; Devi, V.; Singh, V. K., Multistep schemes for one and two dimensional electromagnetic wave models based on fractional derivative approximation, J. Comput. Appl. Math., 380, Article 112985 pp., 2020 · Zbl 1441.78029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.