×

A finite difference/finite element technique with error estimate for space fractional tempered diffusion-wave equation. (English) Zbl 1415.65224

Summary: An efficient numerical technique is proposed to solve one- and two-dimensional space fractional tempered fractional diffusion-wave equations. The space fractional is based on the Riemann-Liouville fractional derivative. At first, the temporal direction is discretized using a second-order accurate difference scheme. Then a classic Galerkin finite element is employed to obtain a full-discrete scheme. Furthermore, for the time-discrete and the full-discrete schemes error estimate has been presented to show the unconditional stability and convergence of the developed numerical method. Finally, two test problems have been illustrated to verify the efficiency and simplicity of the proposed technique.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations

Software:

FODE
Full Text: DOI

References:

[1] Dehghan, M.; Manafian, J.; Saadatmandi, A., Solving nonlinear fractional partial differential equations using the homotopy analysis method, Numer. Methods Partial Differential Equations, 26, 2, 448-479 (2010) · Zbl 1185.65187
[2] Dehghan, M.; Abbaszadeh, M.; Mohebbi, A., Analysis of two methods based on Galerkin weak form for fractional diffusion-wave: Meshless interpolating element free Galerkin (IEFG) and finite element methods, Eng. Anal. Bound. Elem., 64, 205-221 (2016) · Zbl 1403.65068
[3] Li, L.; Xu, D.; Luo, Man, Alternating direction implicit Galerkin finite element method for the two-dimensional fractional diffusion-wave equation, J. Comput. Phys., 255, 471-485 (2013) · Zbl 1349.65456
[4] Liu, Y.; Fang, Z.; Li, H.; He, S., A mixed finite element method for a time-fractional fourth-order partial differential equation, Appl. Math. Comput., 243, 703-717 (2014) · Zbl 1336.65166
[5] Liu, Y.; Du, Y.; Li, H.; Li, J.; He, S., A two-grid mixed finite element method for a nonlinear fourth-order reaction-diffusion problem with time-fractional derivative, Comput. Math. Appl., 70, 2474-2492 (2015) · Zbl 1443.65210
[6] Bu, W.; Tang, Y.; Wu, Y.; Yang, J., Crank-Nicolson ADI Galerkin finite element method for two-dimensional fractional FitzHugh-Nagumo monodomain model, Appl. Math. Comput., 257, 355-364 (2015) · Zbl 1339.65170
[7] Zhao, Z.; Li, C. P., Fractional difference/finite element approximations for the time-space fractional telegraph equation, Appl. Math. Comput., 219, 2975-2988 (2012) · Zbl 1309.65101
[8] Bu, W.; Tang, Y.; Yang, J., Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations, J. Comput. Phys., 276, 26-38 (2014) · Zbl 1349.65441
[9] Feng, L. B.; Zhuang, P.; Liu, F.; Turner, I.; Gu, Y. T., Finite element method for space-time fractional diffusion equation, Numer. Algorithms, 72, 749-767 (2016) · Zbl 1343.65122
[10] Guan, Q.; Gunzburger, M., \( \theta\) schemes for finite element discretization of the space-time fractional diffusion equations, J. Comput. Appl. Math., 288, 264-273 (2015) · Zbl 1320.65141
[11] Lian, Y.; Ying, Y.; Tang, S.; Lin, S.; Wagner, G. J.; Liu, W. K., A Petrov-Galerkin finite element method for the fractional advection-diffusion equation, Comput. Methods Appl. Mech. Eng., 309, 388-410 (2016) · Zbl 1439.65090
[12] Zhao, Y.; Bu, W.; Huang, J.; Liu, D. Y.; Tang, Y., Finite element method for two-dimensional space-fractional advection-dispersion equations, Appl. Math. Comput., 257, 553-565 (2015) · Zbl 1339.65185
[13] Zhuang, P.; Liu, F.; Turner, I.; Gu, Y. T., Finite volume and finite element methods for solving a one-dimensional space-fractional Boussinesq equation, Appl. Math. Model., 38, 3860-3870 (2014) · Zbl 1429.65233
[14] Deng, W., Finite element method for the space and time fractional Fokker-Planck equation, SIAM J. Numer. Anal., 47, 1, 204-226 (2008) · Zbl 1416.65344
[15] Jin, B.; Lazarov, R.; Pasciak, J.; Zhou, Z., Error analysis of a finite element method for the space-fractional parabolic equation, SIAM J. Numer. Anal., 52, 5, 2272-2294 (2013) · Zbl 1310.65126
[16] Macias-Diaz, J. E., Numerical study of the process of nonlinear supratransmission in Riesz space-fractional sine-Gordon equations, Commun. Nonlinear Sci. Numer. Simul., 46, 89-102 (2017) · Zbl 1485.35400
[17] Bhrawy, A. H.; Zaky, M. A., An improved collocation method for multi-dimensional space-time variable-order fractional Schrodinger equations, Appl. Numer. Math., 111, 197-218 (2017) · Zbl 1353.65106
[18] Bhrawy, A. H.; Zaky, M. A., A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations, J. Comput. Phys., 281, 876-895 (2015) · Zbl 1352.65386
[19] Weng, Z.; Zhai, S.; Feng, X., A Fourier spectral method for fractional-in-space Cahn-Hilliard equation, Appl. Math. Model., 42, 462-477 (2017) · Zbl 1443.65255
[20] Yuan, Z. B.; Nie, Y. F.; Liu, F.; Turner, I.; Zhang, G. Y.; Gu, Y. T., An advanced numerical modeling for Riesz space fractional advection-dispersion equations by a meshfree approach, Appl. Math. Model., 40, 7816-7829 (2016) · Zbl 1471.65167
[21] Yu, Y.; Deng, W.; Wu, Y.; Wu, J., Third order difference schemes (without using points outside of the domain) for one sided space tempered fractional partial differential equations, Appl. Numer. Math., 112, 126-145 (2017) · Zbl 1354.65174
[22] Antoine, X.; Tang, Q.; Zhang, Y., On the ground states and dynamics of space fractional nonlinear Schrodinger/Gross-Pitaevskii equations with rotation term and nonlocal nonlinear interactions, J. Comput. Phys., 325, 74-97 (2016) · Zbl 1380.65296
[23] Yang, W.; Wang, D.; Yang, L., A stable numerical method for space fractional Landau-Lifshitz equations, Appl. Math. Lett., 61, 149-155 (2016) · Zbl 1347.65139
[24] Jia, J.; Wang, H., A fast finite volume method for conservative space-fractional diffusion equations in convex domains, J. Comput. Phys., 310, 63-84 (2016) · Zbl 1349.65562
[25] Yang, Z.; Yuan, Z.; Nie, Y.; Wang, J.; Zhu, X.; Liu, F., Finite element method for nonlinear Riesz space fractional diffusion equations on irregular domains, J. Comput. Phys., 330, 863-883 (2017) · Zbl 1378.35330
[26] Pindza, E.; Owolabi, K. M., Fourier spectral method for higher order space fractional reaction-diffusion equations, Commun. Nonlinear Sci. Numer. Simul., 40, 112-128 (2016) · Zbl 1524.65676
[27] Zayernouri, M.; Karniadakis, G. E., Exponentially accurate spectral and spectral element methods for fractional ODEs, J. Comput. Phys., 257, 460-480 (2014) · Zbl 1349.65257
[28] Zayernouri, M.; Karniadakis, G. E., Discontinuous spectral element methods for time-and space-fractional advection equations, SIAM J. Sci. Comput., 36, B684-B707 (2014) · Zbl 1304.35757
[29] Pang, H. K.; Sun, H. W., Fourth order finite difference schemes for time-space fractional sub-diffusion equations, Comput. Math. Appl., 71, 1287-1302 (2016) · Zbl 1443.65136
[30] Feng, L. B.; Zhuang, P.; Liu, F.; Turner, I.; Anh, V.; Li, J., A fast second-order accurate method for a two-sided space-fractional diffusion equation with variable coefficients, Comput. Math. Appl., 73, 1155-1171 (2017) · Zbl 1412.65072
[31] Zhao, X.; Sun, Z. Z.; Hao, Z. P., A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrodinger equation, SIAM J. Sci. Comput., 36, A2865-A2886 (2014) · Zbl 1328.65187
[32] Bu, W.; Tang, Y.; Wu, Y.; Yang, J., Finite difference/finite element method for two-dimensional space and time fractional Bloch-Torrey equations, J. Comput. Phys., 293, 264-279 (2015) · Zbl 1349.65440
[33] Vong, S.; Wang, Z., A compact difference scheme for a two-dimensional fractional Klein-Gordon equation with Neumann boundary conditions, J. Comput. Phys., 274, 268-282 (2014) · Zbl 1352.65273
[34] Chen, M.; Deng, W., A second-order accurate numerical method for the space-time tempered fractional diusion-wave equation, Appl. Math. Lett., 68, 87-93 (2017) · Zbl 1361.65100
[35] Dehghan, M.; Abbaszadeh, M.; Deng, W., Fourth-order numerical method for the space-time tempered fractional diffusion-wave equation, Appl. Math. Lett., 73, 120-127 (2017) · Zbl 1375.65173
[36] Wang, Z.; Vong, S., Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation, J. Comput. Phys., 277, 1-15 (2014) · Zbl 1349.65348
[37] Alikhanov, A. A., A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 280, 424-438 (2015) · Zbl 1349.65261
[38] Alikhanov, A. A., Numerical methods of solutions of boundary value problems for the multi-term variable-distributed order diffusion equation, Appl. Math. Comput., 268, 12-22 (2015) · Zbl 1410.65294
[39] Mashayekhi, S.; Razzaghi, M., Numerical solution of distributed order fractional differential equations by hybrid functions, J. Comput. Phys., 315, 169-181 (2016) · Zbl 1349.65253
[40] Dehghan, M., Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices, Math. Comput. Simulation, 71, 16-30 (2006) · Zbl 1089.65085
[41] Dehghan, M.; Abbaszadeh, M., A finite element method for the numerical solution of Rayleigh- Stokes problem for a heated generalized second grade fluid with fractional derivatives, Eng. Comput., 33, 587-605 (2017)
[42] Saadatmandi, A.; Dehghan, M., A new operational matrix for solving fractional-order differential equations, Comput. Math. Appl., 59, 1326-1336 (2010) · Zbl 1189.65151
[43] Song, J.; Yu, Q.; Liu, F.; Turner, I., A spatially second-order accurate implicit numerical method for the space and time fractional Bloch-Torrey equation, Numer. Algorithms, 66, 911-932 (2014) · Zbl 1408.65057
[44] Sun, H.; Sun, Z. Z.; Gao, G. H., Some high order difference schemes for the space and time fractional Bloch-Torrey equations, Appl. Math. Comput., 281, 356-380 (2016) · Zbl 1410.65329
[45] Sun, Z. Z.; Wu, X. N., A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56, 193-209 (2006) · Zbl 1094.65083
[46] Ervin, V. J.; Roop, J. P., Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Differential Equations, 22, 558-576 (2006) · Zbl 1095.65118
[47] Roop, J. P., Variational Solution of the Fractional Advection Dispersion Equation (2004), Clemson University, (Ph.D. thesis)
[48] Quarteroni, A.; Valli, A., Numerical Approximation of Partial Differential Equations (1997), Springer-Verlag: Springer-Verlag New York
[49] Chen, M.; Deng, W., Discretized fractional substantial calculus, ESAIM Math. Model. Numer. Anal., 49, 2, 373-394 (2015) · Zbl 1314.26007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.