×

On the quasi-periodic Schneider continued fractions. (English) Zbl 07852706

In number theory the result from the paper by J. Liouville from 1844 [“Sur des classes trés étendues dont la valeur n’est ni algébriques, ni même réductibles des irrationelles algébriques”, C. R. Acad. Sci Paris 18, 883–885 (1844)] has been ‘lifted’ to continued fractions with bounded partial quotients and later the search for results like that for \(p\)-adic continued fractions have been pursued.
The paper under review focuses its attention on continued fractions in \(\mathbb{Q}_p,\ p\) prime. Let
1. \((\alpha_i)_{i\geq 1}\in\mathbb{N}^{\ast},\ \alpha_0\in\mathbb{Z}\) and \((b_i)_{i\geq 0}\in\{1,\ldots,p-1\}\),
2. \((n_k)_{k\geq 0},\ (\lambda_k)_{k\geq 0}\) and \((r_k)_{k\geq 0}\) are sequences of positive integers,
3. \(n_{k+1}\geq n_k+\lambda_kr_k\) for all \(k\geq 0\),
Then a \(p\)-adic number \(\xi\) is said to be a so-called quasi-periodic Schneider continued fraction if it is is given by \[ \xi=\left[(\alpha_0,b_0),\ldots,\underset{\leftarrow}{(\alpha_{n_0},b_{n_0})},\underset{\lambda_0}{\ldots},\underset{\rightarrow}{(\alpha_{n_0+r_0-1},b_{n_0+r_0-1})},\ldots,\underset{\leftarrow}{(\alpha_{n_k},b_{n_k})},\underset{\lambda_k}{\ldots},\underset{\rightarrow}{(\alpha_{n_k+r_k-1},b_{n_k+r_k-1})},\ldots\right], \] where \(\alpha_{m+r_k}=\alpha_m,\ b_{m+r+k}=b_m\) for \(n_k\leq m\leq n_k+(\lambda_k-1)r-k-1\).
The main result of the paper is now given by
Theorem 3.1 Let a quasi-periodic Schneider continued fraction \(\xi\) as defined above be given and let \((\alpha_k,b_k)_{k\geq 0}\) be a sequence that is not ultimately periodic. Suppose that \((\alpha_k)_{k\geq 0}\) is bounded and set \(A=\max\,\{\alpha_k|k\in \mathbb{N}\}\).
Assume that \(\alpha_{n_k}=\alpha_{n_k+1}=\cdots =\alpha_{n_k+r_k-1}=\alpha\) for infinitely many \(k\geq 0\). If \[ \limsup_{k\rightarrow +\infty}\,\frac{\lambda_k r_k}{n_k}>1, \] then \(\xi\) is either quadratic or transcendental.
The layout of the paper is as follows
§1. Introduction (\(1\) page)
§2. Schneider continued fraction in \(\mathbb{Q}_p\) (\(1\frac{1}{2}\) pages)
§3. Main results (\(4\frac{1}{2}\) pages)
References (\(16\) items)
A very nice paper.

MSC:

11A55 Continued fractions
11J70 Continued fractions and generalizations
11J81 Transcendence (general theory)
11J87 Schmidt Subspace Theorem and applications

Citations:

Zbl 1532.11017
Full Text: DOI

References:

[1] Adamczewski, B.; Bugeaud, Y., On the Maillet-Baker continued fractions, J. Reine Angew. Math., 606, 105-121, 2007 · Zbl 1145.11054
[2] Ammous, B.; Dammak, L., On the quasi-palindromic \(p\)-adic Ruban continued fractions, Indian J. Pure Appl. Math., 54, 3, 725-733, 2023 · Zbl 1532.11017 · doi:10.1007/s13226-022-00290-1
[3] Ammous, B.; Ben Mahmoud, N.; Hbaib, M., On the quasi-periodic \(p\)-adic Ruban continued fractions, Czech Math. J., 72, 147, 1157-1166, 2022 · Zbl 1538.11138 · doi:10.21136/CMJ.2022.0409-21
[4] Ammous, B.; Dammak, L.; Hbaib, M., Palindromic and quasi-palindromic Ruban continued fraction in \(\mathbb{Q}_p\), Houst. J. Math., 48, 2, 353-368, 2022 · Zbl 1523.11128
[5] Baker, A., Continued fractions of transcendental numbers, Mathematika, 9, 17, 1-8, 1962 · Zbl 0105.03903 · doi:10.1112/S002557930000303X
[6] Belhadef, R.; Esbelin, HA, On the limits of some \(p\)-adic Schneider continued fractions, Adv. Math., 10, 5, 2581-2591, 2021
[7] Bundschuh, P., \(p\)-Adische Kettenbrüche und Irrationalität \(p\)-adischer Zahlen, Elem. Math., 32, 2, 36-40, 1977 · Zbl 0344.10017
[8] Leveque, WJ, Topics in Number Theory, 1956, Reading: Addison-Wesley Publishing Co., Inc,, Reading · Zbl 0070.03804
[9] Liouville, J., Sur des classes très étendues de quantités dont la valeur n’est ni algébrique, ni même réductibles des irrationnelles algébriques, C. R. Acad. Sci. Paris, 18, 883-885, 1844
[10] Mahler, K., Zur approximation \(p\)-adischer irrationalzahlen, Nieuw Arch. Wisk, 18, 22-34, 1934 · Zbl 0009.20003
[11] Maillet, E., Introduction à la théorie des nombres transcendants et des propriétés arithmétiques des fonctions, 274, 1906, Paris: Gauthier-Villars, Paris · JFM 37.0237.02
[12] Ooto, T., Transcendental \(p\)-adic continued fractions, Math. Z., 287, 3, 1053-1064, 2017 · Zbl 1388.11040 · doi:10.1007/s00209-017-1859-2
[13] Ruban, AA, Certain metric properties of \(p\)-adic numbers, Sibirsk. Mat. Zh., 11, 222-227, 1970 · Zbl 0188.10704
[14] Schlickewei, HP, The \(p\)-adic Thue Siegel Roth Schmidt theorem, Arch. Math. (Basel), 29, 267-270, 1977 · Zbl 0365.10026 · doi:10.1007/BF01220404
[15] Schmidt, WM, Diophantine Approximation. Lecture Notes in Mathematics, 1980, Berlin: Springer, Berlin · Zbl 0421.10019
[16] Schneider, T.: Über \(p\)-adische Kettenbrüche. Symp. Math. 5, 181-189 (1968/69)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.