×

On the quasi-periodic \(p\)-adic Ruban continued fractions. (English) Zbl 1538.11138

Summary: We study a family of quasi periodic \(p\)-adic Ruban continued fractions in the \(p\)-adic field \(\mathbb{Q}_p\) and we give a criterion of a quadratic or transcendental \(p\)-adic number which based on the \(p\)-adic version of the subspace theorem due to Schlickewei.

MSC:

11J70 Continued fractions and generalizations
11J61 Approximation in non-Archimedean valuations
11J81 Transcendence (general theory)
11J87 Schmidt Subspace Theorem and applications
Full Text: DOI

References:

[1] Adamczewski, B.; Bugeaud, Y., On the decimal expansion of algebraic numbers, Fiz. Mat. Fak. Moksl. Semin. Darb. 8 (2005), 5-13 · Zbl 1138.11028
[2] Adamczewski, B.; Bugeaud, Y., On the complexity of algebraic numbers. I. Expansions in integer bases, Ann. Math. (2) 165 (2007), 547-565 · Zbl 1195.11094 · doi:10.4007/annals.2007.165.547
[3] Adamczewski, B.; Bugeaud, Y., On the Maillet-Baker continued fractions, J. Reine Angew. Math. 606 (2007), 105-121 · Zbl 1145.11054 · doi:10.1515/CRELLE.2007.036
[4] Baker, A., Continued fractions of transcendental numbers, Mathematika, Lond. 9 (1962), 1-8 · Zbl 0105.03903 · doi:10.1112/S002557930000303X
[5] Laohakosol, V., A characterization of rational numbers by \(p\)-adic Ruban continued fractions, J. Aust. Math. Soc., Ser. A 39 (1985), 300-305 · Zbl 0582.10021 · doi:10.1017/S1446788700026070
[6] LeVeque, W. J., Topics in Number Theory. II, Addison-Wesley, Reading (1956) · Zbl 0070.03804
[7] Mahler, K., Zur Approximation \(p\)-adischer Irrationalzahlen, Nieuw Arch. Wiskd. 18 (1934), 22-34 German · JFM 60.0163.02
[8] Maillet, E., Introduction à la théorie des nombres transcendants et des propriétés arithmétiques des fonctions, Gauthier-Villars, Paris (1906), French \99999JFM99999 37.0237.02 · JFM 37.0237.02
[9] Neukirch, J., Algebraic Number Theory, Grundlehren der Mathematischen Wissenschaften 322. Springer, Berlin (1999) · Zbl 0956.11021 · doi:10.1007/978-3-662-03983-0
[10] Ooto, T., Transcendental \(p\)-adic continued fractions, Math. Z. 287 (2017), 1053-1064 · Zbl 1388.11040 · doi:10.1007/s00209-017-1859-2
[11] Ruban, A. A., Some metric properties of \(p\)-adic numbers, Sib. Math. J. 11 (1970), 176-180 · Zbl 0213.32701 · doi:10.1007/BF00970247
[12] Schlickewei, H. P., The \(p\)-adic Thue-Siegel-Roth-Schmidt theorem, Arch. Math. 29 (1977), 267-270 · Zbl 0365.10026 · doi:10.1007/BF01220404
[13] Schmidt, W. M., Diophantine Approximation, Lecture Notes in Mathematics 785. Springer, Berlin (1980) · Zbl 0421.10019 · doi:10.1007/978-3-540-38645-2
[14] Wang, L., \(P\)-adic continued fractions. I, Sci. Sin., Ser. A 28 (1985), 1009-1017 · Zbl 0628.10036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.