×

Conjugation matters. bioctonionic Veronese vectors and Cayley-Rosenfeld planes. (English) Zbl 07850457

Summary: Motivated by the recent interest in Lie algebraic and geometric structures arising from tensor products of division algebras and their relevance to high energy theoretical physics, we analyze generalized bioctonionic projective and hyperbolic planes. After giving a Veronese representation of the complexification of the Cayley plane \(\mathbb{O}P_{\mathbb{C}}^2\), we present a novel, explicit construction of the bioctonionic Cayley-Rosenfeld plane \((\mathbb{C}\otimes\mathbb{O})P^2\), again by exploiting Veronese coordinates. We discuss the isometry groups of all generalized bioctonionic planes, recovering all complex and real forms of the exceptional groups \(F_4\) and \(E_6\), and characterizing such planes as symmetric and Hermitian symmetric spaces. We conclude by discussing some possible physical applications.

MSC:

83-XX Relativity and gravitational theory
53-XX Differential geometry

References:

[1] Alexander, S., Marcianò, A. and Smolin, L., Gravitational origin of the weak interaction’s chirality, Phys. Rev. D89 (2014) 065017.
[2] Anastasiou, A., Borsten, L., Duff, M. J., Hughes, L. J. and Nagy, S., A magic pyramid of supergravities, J. High Energy Phys.04 (2014) 178, arXiv: 1312.6523 [hep-th]. · Zbl 1333.83206
[3] J. C. Baez, The octonions, Bull. Am. Math. Soc.39 (2002) 145-205, [Erratum, Bull. Amer. Math. Soc.42 (2005) 213], arXiv:math/0105155 [math.RA]. · Zbl 1026.17001
[4] Barr, S. M., \( E_8\) family unification, mirror fermions, and new low-energy physics, Phys. Rev. D37 (1988) 204.
[5] Bentz, L. and Dray, T., Subalgebras of the split octonions, Adv. Appl. Clifford Algebras28(2) (2018) 40. · Zbl 1430.11154
[6] Boyle, L. and Farnsworth, S., The standard model, the Pati-Salam model, and “Jordan geometry”, New J. Phys.21 (2020) 073023, arXiv: 1910.11888 [hep-th].
[7] Bars, I. and Günaydin, M., Grand unification with the exceptional group \(E_8\), Phys. Rev. Lett.45 (1980) 859.
[8] Breitenlohner, P., Maison, D. and Gibbons, G. W., Four-dimensional black holes from Kaluza-Klein theories, Commun. Math. Phys.120 (1988) 295. · Zbl 0661.53064
[9] Borsten, L. and Marrani, A., A kind of magic, Classical Quantum Gravity34(23) (2017) 235014, arXiv: 1707.02072 [hep-th]. · Zbl 1381.83130
[10] L. Boyle, The Standard Model, the exceptional Jordan algebra, and triality, preprint (2020), arXiv:2006.16265 [hep-th].
[11] Barton, C. H. and Sudbery, A., Magic squares and matrix models of Lie algebras, Adv. Math.180(2) (2003) 596-647, arXiv: math/0203010 [math.RA]. · Zbl 1077.17011
[12] Cayley, A., On Jacobi’s Elliptic functions, in reply to the Rev. Brice Bronwin; and on Quaternions, Philos. Mag.26 (1845) 208.
[13] Cacciatori, S. L., Cerchiai, B. L. and Marrani, A., Squaring the magic, Adv. Theor. Math. Phys.19 (2015) 923-954, arXiv: 1208.6153 [math-ph]. · Zbl 1338.83063
[14] Chaput, P.-E., Geometry over composition algebras: Projective geometry, J. Algebra298(2) (2006) 340-362, arXiv: math/0509549[math.AG]. · Zbl 1155.17002
[15] D. Chester, A. Marrani and M. Rios, Beyond the standard model with six-dimensional spacetime, preprint (2020), arXiv:2002.02391v2 [phys.gen-ph].
[16] Corradetti, D., Complexification of the exceptional Jordan algebra and its application to particle physics, J. Geom. Symmetry Phys.61 (2021) 1-16. · Zbl 1510.17055
[17] Das, C. R., Laperashvili, L. V. and Tureanu, A., Graviweak unification, invisible universe, and dark energy, Internat. J. Modern Phys. A28(18) (2013) 1350085, arXiv: 1304.3069 [hep-th].
[18] Wangberg, A. and Dray, T., \( E_6\), the group: The structure of \(SL(3,\mathbb{O})\), J. Algebra Appl.14(06) (2015) 1550091, arXiv: 1212.3182 [math.RA]. · Zbl 1332.17009
[19] de Wit, B., Tollsten, A. K. and Nicolai, H., Locally supersymmetric \(D = 3\) nonlinear sigma models, Nucl. Phys. B392 (1993) 3, arXiv: hep-th/9208074.
[20] Ferrara, S. and Marrani, A., On the Moduli space of non-BPS attractors for \(\mathcal{N}=2\) symmetric manifolds, Phys. Lett. B652 (2007) 111, arXiv: 0706.1667 [hep-th]. · Zbl 1248.83138
[21] Freudenthal, H., Beziehungen der E_7 und E_8 zur Oktavenebene, Indagat. Math.16 (1954) 218-230, 636-638; 17 (1955) 151-157, 277-285; 25 (1963) 457-487. · Zbl 0058.26101
[22] Günaydin, M., Kallosh, R., Linde, A. and Yamada, Y., M-theory cosmology, octonions, error correcting codes, J. High Energy Phys.01 (2021) 160, arXiv: 2008.01494 [hep-th]. · Zbl 1459.85002
[23] Hamilton, W. R., Note, by Sir W. R. Hamilton, respecting the researches of John T. Graves, Esq., Trans. R. Irish Acad.21 (1948) 338.
[24] Gürsey, F., Ramond, P. and Sikivie, P., A universal gauge theory model ased on \(E_6\), Phys. Lett. B60 (1976) 177-180.
[25] Günaydin, M., Sierra, G. and Townsend, P. K., Exceptional supergravity theories and the magic square, Phys. Lett. B133 (1983) 72-76.
[26] Günaydin, M., Sierra, G. and Townsend, P. K., The geometry of \(\mathcal{N}=2\) Maxwell-Einstein supergravity and Jordan algebras, Nucl. Phys. B242 (1984) 244. · Zbl 0576.53076
[27] Hurwitz, A., Uber die Composition der quadratischen Formen von beliebig vielen Variabeln, Nachr. Ges. Wiss. Gottingen1898 (1898) 309-316. · JFM 29.0177.01
[28] Jacobson, N., Structure and Representations of Jordan Algebras (American Mathematical Society, Providence, RI, 1968). · Zbl 0218.17010
[29] Jacobson, N., Some groups of transformations defined by Jordan algebras. III, J. Reine Angew. Math.207 (1961) 61-85. · Zbl 0142.26501
[30] Jordan, P., von Neumann, J. and Wigner, E., On an algebraic generalisation of the quantum mechanical formalism, Ann. Math.35 (1934) 29-64. · Zbl 0008.42103
[31] Kostant, B., The principle of triality and a distinguished unitary representation of SO(4,4), contribution to: “Differential geometrical methods in theoretical physics” (Como, 1987), NATO Adv. Sci. Inst. Ser. C, Math. Phys. Sci.250 (1988) 65-108. · Zbl 0663.22009
[32] Krasnov, K., SO(9) characterisation of the Standard Model gauge group, J. Math. Phys.62 (2021) 021703, arXiv: 2104.01786 [hep-th]. · Zbl 1459.81127
[33] K. Kasnov, Spin(11,3), particles and octonions, preprint (2021), arXiv:2104.01786 [hep-th].
[34] Krutelevich, S., Jordan algebras, exceptional groups, and higher composition laws, J. Algebra314 (2007) 924, arXiv: math/0411104 [math.NT]. · Zbl 1163.17032
[35] Masi, N., An exceptional \(G ( 2 )\) extension of the Standard Model from the correspondence with Cayley-Dickson algebras automorphism groups, Sci. Rep.11 (2021) 22528, arXiv: 2111.11849 [hep-ph].
[36] McCrimmon, K., A Taste of Jordan Algebras, (Springer-Verlag, New York, 2004). · Zbl 1044.17001
[37] Nesti, F. and Percacci, R., Gravi-weak unification, J. Phys. A41 (2008) 075405. · Zbl 1138.81555
[38] Reig, M., Valle, J. W. F. and Wilczek, F., SO(3) family symmetry and axions, Phys. Rev. D98(9) (2018) 095008, arXiv: 1805.08048 [hep-ph].
[39] Rosenfeld, B. A., Spaces with exceptional fundamental groups, Publ. Inst. Math.54(68) (1993) 97-119. · Zbl 0831.22003
[40] Rosenfeld, B. A., Geometry of Lie Groups (Springer-VerlagUS, 1997). · Zbl 0867.53002
[41] Rosenfeld, B. A., Geometry of planes over nonassociative algebras, Acta Appl. Math.50 (1998) 103-110. · Zbl 0893.22006
[42] Salzmann, H., Betten, D., Grundhöfer, T., Hähl, H., Löwen, R. and Stroppel, M., Compact Projective Planes: With an Introduction to Octonion Geometry (De Gruyter, Berlin-New York, 2011). · Zbl 0851.51003
[43] Todorov, I. T. and Dubois-Violette, M., Deducing the symmetry of the standard model from the automorphism and structure groups of the exceptional Jordan algebra, Internat. J. Modern Phys A33 (2018) 1850118, arXiv: 1806.09450[hep-th]. · Zbl 1453.81036
[44] Tits, J., Le plan projectif des octaves et les groupes de Lie exceptionnels, Acad. Roy. Belg. Bull. Cl. Sci.39(5) (1953) 309-329. · Zbl 0050.25803
[45] Varadarajan, V. S., Supersymmetry for Mathematicians: An Introduction (American Mathematical Society, Providence, RI, 2004). · Zbl 1142.58009
[46] Vinberg, E. B., A construction of exceptional Lie groups, Tr. Semin. Vek-torn. Tensorn. Anal.13 (1966) 7-9, (in Russian).
[47] Wilson, R. A., On the problem of choosing subgroups of clifford algebras for applications in fundamental physics, Adv. Appl. Clifford Algebras31 (2021) 59, arXiv: 2011.05171 [math.RA]. · Zbl 1472.15034
[48] Witten, E., Quest for unification, in contribution to 10th Int. Conf. Supersymmetry and Unification of Fundamental Interactions (SUSY02) (2002), pp. 604-610, arXiv:0207124 [hep-ph].
[49] Yale, P. B., Automorphisms of the complex numbers, Math. Mag.39 (1966) 135-141. · Zbl 0156.27502
[50] I. Yokota, Exceptional Lie groups, preprint (2009), arXiv:0902.0431 [math.DG].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.