×

On the problem of choosing subgroups of Clifford algebras for applications in fundamental physics. (English) Zbl 1472.15034

Summary: Clifford algebras are used for constructing spin groups, and are therefore of particular importance in the theory of quantum mechanics. An algebraist’s perspective on the many subgroups and subalgebras of Clifford algebras may suggest ways in which they might be applied more widely to describe the fundamental properties of matter. I do not claim to build a physical theory on top of the fundamental algebra, and my suggestions for possible physical interpretations are indicative only, and may not work. Nevertheless, both the existence of three generations of fermions and the symmetry-breaking of the weak interaction seem to emerge naturally from an extension of the Dirac algebra from complex numbers to quaternions.

MSC:

15A67 Applications of Clifford algebras to physics, etc.
15A66 Clifford algebras, spinors
81T11 Higher spin theories
81R40 Symmetry breaking in quantum theory
81R25 Spinor and twistor methods applied to problems in quantum theory

References:

[1] Adamo, T., Lectures on twistor theory, PoS Modave, 2017, 003 (2018)
[2] Baez, JC; Huerta, J., The algebra of grand unified theories, Bull. Am. Math. Soc., 47, 483-552 (2010) · Zbl 1196.81252 · doi:10.1090/S0273-0979-10-01294-2
[3] Cabibbo, N., Unitary symmetry and leptonic decays, Phys. Rev. Lett., 10, 12, 531-533 (1963) · doi:10.1103/PhysRevLett.10.531
[4] Chester, D., Marrani, A., Rios, M.: Beyond the standard model with six-dimensional spacetime. arXiv:2002.02391 (2020)
[5] Coleman, S.; Mandula, J., All possible symmetries of the S matrix, Phys. Rev., 159, 5, 1251 (1987) · Zbl 0168.23702 · doi:10.1103/PhysRev.159.1251
[6] Dirac, PAM, The quantum theory of the electron, Proc. R. Soc. A, 117, 610-624 (1928) · JFM 54.0973.01
[7] Einstein, A., Spielen Gravitationsfelder im Aufbau der materiellen Elementarteilchen eine wesentliche Rolle? (1919), Wissenschaften: Sitzungsberichte der Preussisschen Akad. d, Wissenschaften
[8] Einstein, A., Die Grundlage der allgemeinen Relativitätstheorie, Ann. Phys., 49, 7, 769-822 (1916) · JFM 46.1293.01 · doi:10.1002/andp.19163540702
[9] Einstein, A., The Meaning of Relativity (1955), Princeton: Princeton University Press, Princeton · Zbl 0067.20404
[10] Fairlie, DB; Manogue, CA, Lorentz invariance and the composite string, Phys. Rev. D, 34, 1832-1834 (1986) · doi:10.1103/PhysRevD.34.1832
[11] Feynman, RP, Quantum Electrodynamics (1988), Boulder: Westview Press, Boulder
[12] Furey, C., Generations: three prints, in colour, J. High Energy Phys., 10, 046 (2014) · Zbl 1400.81148 · doi:10.1007/JHEP10(2014)046
[13] Furey, C.: Standard model physics from an algebra? PhD thesis. arXiv:1611.09182 (2016)
[14] Furey, N., Three generations, two unbroken gauge symmetries, and one eight-dimensional algebra, Phys. Lett. B, 785, 84-89 (2018) · Zbl 1398.81158 · doi:10.1016/j.physletb.2018.08.032
[15] Gell-Mann, M.: The eightfold way: a theory of strong interaction symmetry. Synchrotron Lab. Report CTSL-20, Cal. Tech. (1961)
[16] Georgi, H.; Glashow, S., Unity of all elementary-particle forces, Phys. Rev. Lett., 32, 8, 438 (1974) · doi:10.1103/PhysRevLett.32.438
[17] Griffiths, D., Introduction to Elementary Particles (2008), New York: Wiley, New York · Zbl 1162.00012
[18] Gross, DJ; Wilczek, F., Ultraviolet behaviour of non-abelian gauge theories, Phys. Rev. Lett., 30, 26, 1343-1346 (1973) · doi:10.1103/PhysRevLett.30.1343
[19] Ivanenko, D.; Sardanashvily, G., The gauge treatment of gravity, Phys. Rep., 94, 1-45 (1983) · doi:10.1016/0370-1573(83)90046-7
[20] Kobayashi, M.; Maskawa, T., CP-violation in the renormalizable theory of weak interaction, Progress Theoret. Phys., 49, 2, 652-657 (1973) · doi:10.1143/PTP.49.652
[21] Leclerc, M., The Higgs sector of gravitational gauge theories, Ann. Phys., 321, 708-743 (2006) · Zbl 1092.83008 · doi:10.1016/j.aop.2005.08.009
[22] Maki, Z.; Nakagawa, M.; Sakata, S., Remarks on the unified model of elementary particles, Progress Theoret. Phys., 28, 5, 870 (1962) · Zbl 0125.22605 · doi:10.1143/PTP.28.870
[23] Maldacena, JM, The Large \(N\) limit of superconformal field theories and supergravity, Adv. Theor. Math. Math., 2, 231-252 (1998) · Zbl 0914.53047
[24] Manogue, CA; Dray, T., Octonions, \(E_6\), and particle physics, J. Phys. Conf. Ser., 254, 012005 (2010) · doi:10.1088/1742-6596/254/1/012005
[25] Pati, JC; Salam, A., Lepton number as the fourth ‘color’, Phys. Rev. D, 10, 1, 275-289 (1974) · doi:10.1103/PhysRevD.10.275
[26] Penrose, R., Twistor algebra, J. Math. Phys., 8, 2, 345-366 (1967) · Zbl 0163.22602 · doi:10.1063/1.1705200
[27] Penrose, R., The Road to Reality (2004), London: Jonathan Cape, London
[28] Politzer, HD, Reliable perturbative results for strong interactions, Phys. Rev. Lett., 30, 26, 1346-1349 (1973) · doi:10.1103/PhysRevLett.30.1346
[29] Pontecorvo, B., Inverse beta processes and non-conservation of lepton charge, Soviet Phys. JETP, 7, 172 (1958)
[30] Porteous, IR, Clifford Algebras and the Classical Groups (1995), Cambridge: Cambridge University Press, Cambridge · Zbl 0855.15019 · doi:10.1017/CBO9780511470912
[31] Sachs, M., Quantum Mechanics from General Relativity: An Approximation to a Theory of Inertia (1986), Cambridge: D. Reidel Publishing Co., Cambridge · doi:10.1007/978-94-009-4664-4
[32] Shirokov, DS, Symplectic, orthogonal and linear Lie groups in Clifford algebra, Adv. Appl. Clifford Algebras, 25, 3, 707-718 (2015) · Zbl 1323.15015 · doi:10.1007/s00006-014-0520-y
[33] Shirokov, DS, On some Lie groups containing spin group in Clifford algebra, J. Geometry Symmetry Phys., 42, 73-94 (2016) · Zbl 1379.15016 · doi:10.7546/jgsp-42-2016-73-94
[34] Shirokov, DS, Classification of Lie algebras of specific type in complexified Clifford algebras, Linear Multilinear Algebra, 66, 9, 1870-1887 (2018) · Zbl 1393.17034 · doi:10.1080/03081087.2017.1376612
[35] Stoica, OC, The standard model algebra—leptons, quarks, and gauge from the complex clifford algebra Cl6, Adv. Appl. Clifford Alg., 28, 52 (2018) · Zbl 1403.81072 · doi:10.1007/s00006-018-0869-4
[36] ’t Hooft, G., Introduction to General Relativity (2001), Rinton: Princeton, Rinton · Zbl 1008.83001
[37] Todorov, I.: Superselection of the weak hypercharge and the algebra of the Standard Model. arXiv:2010.15621 (2020)
[38] van der Waerden, BL, Spinoranalyse, Nachr. Ges. Wiss. Göttingen Math.-Phys. Ohne Angabe, 20, 100-109 (1929) · JFM 55.0511.09
[39] Weinberg, S., A model of leptons, Phys. Rev. Lett., 19, 1264-66 (1967) · doi:10.1103/PhysRevLett.19.1264
[40] Wilson, R.A.: A group-theorist’s perspective on symmetry groups in physics. arXiv:2009.14613 (2020)
[41] Wilson, R.A.: Finite symmetry groups in physics. arXiv:2102.02817 (2021)
[42] Wilson, R.A.: Options for a finite group model of quantum mechanics. arXiv:2104.10165 (2021)
[43] Wilson, RA, Potential Uses of Representations of \(SL(4,\mathbb{R} )\) in Particle Physics, Preprint 19014 (2020), Cambridge: Isaac Newton Institute, Cambridge
[44] Wilson, RA, Remarks on the Group-Theoretical Foundations of Particle Physics, Preprint 19011 (2020), Cambridge: Isaac Newton Institute, Cambridge
[45] Wilson, RA, Possible Emergence of Fundamental Constants from a Generally Covariant Theory of Quantum Mechanics, Preprint 19013 (2020), Cambridge: Isaac Newton Institute, Cambridge
[46] Wilson, R.A.: Potential applications of modular representation theory to quantum mechanics. arXiv:2106.00550 (2021)
[47] Woit, P., Quantum Theory, Groups and Representations (2017), Berlin: Springer, Berlin · Zbl 1454.81004 · doi:10.1007/978-3-319-64612-1
[48] Wu, CS; Ambler, E.; Hayward, RW; Hoppes, DD; Hudson, RP, Experimental test of parity conservation in beta decay, Phys. Rev., 105, 4, 1413-1415 (1957) · doi:10.1103/PhysRev.105.1413
[49] Zee, A., Group Theory in a Nutshell for Physicists (2016), Princeton: Princeton University Press, Princeton · Zbl 1346.20001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.