×

Analysis of a parallel grad-div stabilized method for the Navier-Stokes problem with friction boundary conditions. (English) Zbl 07846583

Summary: By combining grad-div stabilization used for improving pressure-robustness and full domain partition used for parallelization, a new parallel finite element method for the steady Navier-Stokes problem with friction boundary conditions is developed and analyzed. Within this parallel procedure, each processor assigned with one subdomain uses a composite grid to calculate a local approximation solution in its own subdomain, making the method simple and easy to carry out on the basis of existing sequential solver excluding a lot of effort in recoding on the top of existing serial software. We rigorously derive the uniform error estimates concerning the fine grid size \(h\), the viscosity \(\mu\) and stabilization parameter \(\alpha\) for the velocity, gradient of velocity and pressure in \(L^2\) norms and for the pressure in \(H^{-1}\) norm for the standard grad-div stabilized method. On the basis of the derived uniform error estimates and local a priori estimate for grad-div stabilized solution, we further give the uniform error estimates for the local and parallel grad-div stabilized methods. It is shown theoretically and numerically that our present method can reduce the influence of pressure on the error of velocity when the viscosity \(\mu\) is small. Specifically, it can yield better approximate velocity than its counterpart excluding grad-div stabilization. The smaller the viscosity coefficient, the higher improvment in accuracy of the approximate velocity. Besides, it can provide approximate solutions for the velocity and pressure with the same basically precision and convergence rate as the ones calculated by the standard grad-div stabilized method with a massive decrease in CPU time.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
76D07 Stokes and related (Oseen, etc.) flows
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

Software:

FreeFem++
Full Text: DOI

References:

[1] Fujita, H.; Kawarada, H., Variational inequalities for the Stokes equation with boundary conditions of friction type, Recent Dev. Domain Decompos. Methods Flow Probe, 11, 15-33, 1998 · Zbl 0926.76092
[2] Evans, A., Partial Differential Equations, 1998, Providence: American Mathematical Society, Providence · Zbl 0902.35002
[3] Temam, R., Navier-Stokes Equations: Theory and Numerical Analysis, 1984, Amsterdan: North-Holland, Amsterdan · Zbl 0568.35002
[4] Girault, V.; Raviart, P., Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, 1986, Berlin: Springer, Berlin · Zbl 0585.65077 · doi:10.1007/978-3-642-61623-5
[5] John, V., Finite Element Methods for Incompressible Flow Problems, 2016, Cham: Springer, Cham · Zbl 1358.76003 · doi:10.1007/978-3-319-45750-5
[6] Hu, X.; Mu, L.; Ye, X., A weak Galerkin finite element method for the Navier-Stokes equations, J. Comput. Appl. Math., 362, 614-625, 2019 · Zbl 1422.65389 · doi:10.1016/j.cam.2018.08.022
[7] Feng, X.; Lu, X.; He, Y., Difference finite element method for the 3D steady Navier-Stokes equations, SIAM J. Numer. Anal., 61, 167-193, 2023 · Zbl 1511.76053 · doi:10.1137/21M1450872
[8] Xu, J.; Zhou, A., Local and parallel finite element algorithms based on two-grid discretizations, Math. Comput., 69, 881-909, 2000 · Zbl 0948.65122 · doi:10.1090/S0025-5718-99-01149-7
[9] He, Y.; Xu, J.; Zhou, A.; Li, J., Local and parallel finite element algorithms for the Stokes problem, Numer. Math., 109, 415-434, 2008 · Zbl 1145.65097 · doi:10.1007/s00211-008-0141-2
[10] He, Y.; Xu, J.; Zhou, A., Local and parallel finite element algorithms for the Navier-Stokes problem, J. Comput. Math., 24, 227-238, 2006 · Zbl 1093.76035
[11] Shang, Y.; He, Y., Parallel iterative finite element algorithms based on full domain partition for the stationary Navier-Stokes equations, Appl. Numer. Math., 60, 719-737, 2010 · Zbl 1425.76147 · doi:10.1016/j.apnum.2010.03.013
[12] Tang, Q.; Huang, Y., Analysis of parallel finite element algorithm based on three linearization methods for the steady incompressible MHD flow, Comput. Math. Appl., 78, 35-54, 2019 · Zbl 1442.65398 · doi:10.1016/j.camwa.2019.02.003
[13] Zheng, B.; Qin, J.; Shang, Y., Stability and convergence of some parallel iterative subgrid stabilized algorithms for the steady Navier-Stokes equations, Adv. Comput. Math., 48, 35, 2022 · Zbl 1496.76089 · doi:10.1007/s10444-022-09950-6
[14] Zhou, K.; Shang, Y., Parallel iterative stabilized finite element algorithms for the Navier-Stokes equations with nonlinear slip boundary conditions, Int. J. Numer. Methods Fluids, 93, 1074-1109, 2021 · doi:10.1002/fld.4920
[15] Ran, H.; Zheng, B.; Shang, Y., A parallel finite element variational multiscale method for the Navier-Stokes equations with nonlinear slip boundary conditions, Appl. Numer. Math., 168, 274-292, 2021 · Zbl 1469.76065 · doi:10.1016/j.apnum.2021.06.004
[16] Zheng, B.; Shang, Y., Parallel defect-correction methods for incompressible flows with friction boundary conditions, Comput. Fluids, 251, 2023 · Zbl 1521.76388 · doi:10.1016/j.compfluid.2022.105733
[17] Franca, L.; Hughes, T., Two classes of mixed finite element methods, Comput. Methods Appl. Mech. Eng., 69, 89-129, 1988 · Zbl 0629.73053 · doi:10.1016/0045-7825(88)90168-5
[18] John, V.; Linke, A.; Merdon, C.; Neilan, M., On the divergence constraint in mixed finite element methods for incompressible flows, SIAM Rev., 59, 492-544, 2017 · Zbl 1426.76275 · doi:10.1137/15M1047696
[19] Linke, A.; Rebholz, L., On a reduced sparsity stabilization of grad-div type for incompressible flow problems, Comput. Methods Appl. Mech. Eng., 261, 142-153, 2003 · Zbl 1286.76032
[20] Olshanskii, M.; Reusken, A., Grad-div stablilization for Stokes equations, Math. Comput., 73, 1699-1718, 2004 · Zbl 1051.65103 · doi:10.1090/S0025-5718-03-01629-6
[21] Layton, W.; Manica, C.; Neda, M.; Olshanskii, M., On the accuracy of the rotation form in simulations of the Navier-Stokes equations, J. Comput. Phys., 228, 3433-3447, 2009 · Zbl 1161.76030 · doi:10.1016/j.jcp.2009.01.027
[22] de Frutos, J.; Garcia-Archilla, B.; John, V.; Novo, J., Grad-div stabilization for the evolutionary Oseen problem with inf-sup stable finite elements, J. Sci. Comput., 66, 991-1024, 2016 · Zbl 1462.65138 · doi:10.1007/s10915-015-0052-1
[23] de Frutos, J.; García-Archilla, B.; John, V.; Novo, J., Analysis of the grad-div stabilization for the time-dependent Navier-Stokes equations with inf-sup stable finite elements, Adv. Comput. Math., 44, 195-225, 2018 · Zbl 1404.65188 · doi:10.1007/s10444-017-9540-1
[24] Fiordilino, J.; Layton, W.; Rong, Y., An efficient and modular grad-div stabilization, Comput. Methods Appl. Mech. Eng., 335, 327-346, 2018 · Zbl 1440.76058 · doi:10.1016/j.cma.2018.02.023
[25] Rong, Y.; Fiordilino, J., Numerical analysis of a BDF2 modular grad-div stabilization method for the Navier-Stokes equations, J. Sci. Comput., 82, 66, 2020 · Zbl 1436.76046 · doi:10.1007/s10915-020-01165-5
[26] Lu, X.; Huang, P., A modular grad-div stabilization for the 2D/3D nonstationary incompressible magnetohydrodynamics equations, J. Sci. Comput., 82, 3, 2020 · Zbl 1448.76195 · doi:10.1007/s10915-019-01114-x
[27] Jiang, Y.; Zheng, B.; Shang, Y., A parallel grad-div stabilized finite element algorithm for the Stokes equations with damping, Comput. Math. Appl., 135, 171-192, 2023 · Zbl 1538.65523 · doi:10.1016/j.camwa.2023.01.033
[28] Jenkins, E.; John, V.; Linke, A.; Rebholz, L., On the parameter choice in grad-div stabilization for Stokes equations, Adv. Comput. Math., 40, 491-516, 2014 · Zbl 1426.76272 · doi:10.1007/s10444-013-9316-1
[29] Ahmed, N., On the grad-div stabilization for the steady Oseen and Navier-Stokes equations, Calcolo, 54, 471-501, 2017 · Zbl 1375.35305 · doi:10.1007/s10092-016-0194-z
[30] Fujita, H.: Flow problems with Unilateral Boundary Conditions. Lecons, Collège de France (1993)
[31] Li, Y.; Li, K., Uzawa iteration method for Stokes type variational inequality of the second kind, Acta Math. Appl. Sin. Engl. Ser., 27, 303-316, 2011 · Zbl 1211.35220 · doi:10.1007/s10255-011-0063-0
[32] Fujita, H., A mathematical analysis of motions of viscous incompressible fluid under leak or slip boundary conditions, RIMS Kokyuroku, 888, 199-216, 1994 · Zbl 0939.76527
[33] Fujita, H., Non-stationary Stokes flows under leak boundary conditions of friction type, J. Comput. Math., 19, 1-8, 2001 · Zbl 0993.76014
[34] Fujita, H., A coherent analysis of Stokes flows under boundary conditions of friction type, J. Comput. Appl. Math., 149, 57-69, 2002 · Zbl 1058.76023 · doi:10.1016/S0377-0427(02)00520-4
[35] Saito, N., On the Stokes equations with the leak and slip boundary conditions of friction type: regularity of solutions, Publ. RIMS Kyoto Univ., 40, 345-384, 2004 · Zbl 1050.35029 · doi:10.2977/prims/1145475807
[36] Le Roux, C., Steady Stokes flows with threshold slip boundary conditions, Math. Models Methods Appl. Sci., 15, 1141-1168, 2005 · Zbl 1129.35424 · doi:10.1142/S0218202505000686
[37] Li, Y.; Li, K., Existence of the solution to stationary Navier-Stokes equations with nonlinear slip boundary conditions, J. Math. Anal. Appl., 381, 1-9, 2011 · Zbl 1221.35282 · doi:10.1016/j.jmaa.2011.04.020
[38] Li, Y.; Li, K., Global strong solutions of two-dimensional Navier-Stokes equations with nonlinear slip boundary conditions, J. Math. Anal. Appl., 393, 1-13, 2012 · Zbl 1245.35083 · doi:10.1016/j.jmaa.2012.04.001
[39] Kashiwabara, T., On a strong solution of the non-stationary Navier-Stokes equations under slip or leak boundary conditions of friction type, J. Differ. Equ., 254, 756-778, 2013 · Zbl 1253.35102 · doi:10.1016/j.jde.2012.09.015
[40] Li, Y.; An, R., Two-level pressure projection finite element methods for Navier-Stokes equations with nonlinear slip boundary conditions, Appl. Numer. Math., 61, 285-297, 2011 · Zbl 1371.76094 · doi:10.1016/j.apnum.2010.10.005
[41] Li, Y.; An, R., Penalty finite element method for Navier-Stokes equations with nonlinear slip boundary conditions, Int. J. Numer. Methods Fluids, 69, 550-566, 2012 · doi:10.1002/fld.2574
[42] Li, Y.; An, R., Two-level variational multiscale finite element methods for Navier-Stokes type variational inequality problem, J. Comput. Appl. Math., 290, 656-669, 2015 · Zbl 1328.76022 · doi:10.1016/j.cam.2015.06.018
[43] Djokoa, J.; Kokob, J., Numerical methods for the Stokes and Navier-Stokes equations driven by threshold slip boundary conditions, Comput. Methods Appl. Mech. Eng., 305, 936-958, 2016 · Zbl 1423.76224 · doi:10.1016/j.cma.2016.03.026
[44] Diokoa, J., A priori error analysis for Navier-Stokes equations with slip boundary conditions of friction type, J. Math. Fluid Mech., 21, 1, 2019 · Zbl 1414.65011
[45] Qiu, H.; An, R.; Mei, L.; Xue, C., Two-step algorithms for the stationary incompressible Navier-Stokes equations with friction boundary conditions, Appl. Numer. Math., 120, 97-114, 2017 · Zbl 06755529 · doi:10.1016/j.apnum.2017.05.003
[46] Jing, F.; Han, W.; Yan, W.; Wang, F., Discontinuous Galerkin methods for a stationary Navier-Stokes problem with a nonlinear slip boundary condition of friction type, J. Sci. Comput., 76, 888-912, 2018 · Zbl 1397.65272 · doi:10.1007/s10915-018-0644-7
[47] Zheng, B.; Shang, Y., A three-step defect-correction algorithm for incompressible flows with friction boundary conditions, Numer. Algor., 91, 1483-1510, 2022 · Zbl 1513.76070 · doi:10.1007/s11075-022-01311-0
[48] Chen, Z., Finite Element Methods and Their Applications, 2005, Heidelberg: Springer, Heidelberg · Zbl 1082.65118
[49] Hecht, F., New development in FreeFem++, J. Numer. Math., 20, 251-265, 2012 · Zbl 1266.68090 · doi:10.1515/jnum-2012-0013
[50] He, Y.; Li, L., Convergence of three iterative methods based on the finite element discretization for the stationary Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 198, 1351-1359, 2009 · Zbl 1227.76031 · doi:10.1016/j.cma.2008.12.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.